Publications by authors named "Senan M D'Almeida"

Hemoglobin A is a widely used diagnostic tool for monitoring glycemic control in diabetes management. However, its accuracy can be influenced by various factors. We present a case of a 17-year-old boy with abnormally low Hemoglobin A levels caused by warm autoantibody-induced hemolytic anemia.

View Article and Find Full Text PDF

The increasing exposure to nanoplastics (NPs) raises significant concerns for human health, primarily due to their potential bioaccumulative properties. While NPs have recently been detected in human blood, their interactions with specific immune cell subtypes and their impact on immune regulation remain unclear. In this proof-of-concept study, model palladium-doped polystyrene NPs (PS-Pd NPs) are utilized to enable single-cell mass cytometry (CyTOF) detection.

View Article and Find Full Text PDF

Mass cytometry and full spectrum flow cytometry have recently emerged as new promising single cell proteomic analysis tools that can be exploited to decipher the extensive diversity of immune cell repertoires and their implication in human diseases. In this study, we evaluated the performance of mass cytometry against full spectrum flow cytometry using an identical 33-color antibody panel on four healthy individuals. Our data revealed an overall high concordance in the quantification of major immune cell populations between the two platforms using a semi-automated clustering approach.

View Article and Find Full Text PDF

There is a critical unmet need to detect and image 2D materials within single cells and tissues while surveying a high degree of information from single cells. Here, a versatile multiplexed label-free single-cell detection strategy is proposed based on single-cell mass cytometry by time-of-flight (CyTOF) and ion-beam imaging by time-of-flight (MIBI-TOF). This strategy, "Label-free sINgle-cell tracKing of 2D matErials by mass cytometry and MIBI-TOF Design" (LINKED), enables nanomaterial detection and simultaneous measurement of multiple cell and tissue features.

View Article and Find Full Text PDF
Article Synopsis
  • Malignant pleural mesothelioma (MPM) is an aggressive cancer linked to asbestos exposure, with macrophages in the tumor microenvironment playing a critical role in its development.
  • The study analyzed the M-CSF/IL-34/CSF-1R pathway in macrophage formation using patient samples and various research methods, including a 3D coculture model.
  • Findings revealed that high levels of IL-34 in pleural effusions correlated with shorter patient survival, and MPM cells promote immunosuppressive macrophages via the CSF1-R pathway, indicating potential therapeutic targets for immunotherapy.
View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The discovery of soluble biomarkers with diagnostic/prognostic and/or therapeutic properties would improve therapeutic care of MPM patients. Currently, soluble biomarkers described present weaknesses preventing their use in clinic.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAM) are immunosuppressive cells that can massively accumulate in the tumor microenvironment. In patients with ovarian cancer, their density is correlated with poor prognosis. Targeting mediators that control the generation or the differentiation of immunoregulatory macrophages represents a therapeutic challenge to overcome tumor-associated immunosuppression.

View Article and Find Full Text PDF

Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S.

View Article and Find Full Text PDF