Resistive switching (RS) of Transition Metal Oxides (TMOs) has become not only an attractive choice for the development of next generation non-volatile memory, but also as a suitable family of materials capable of supporting high-frequency and high-speed switching needed for the next generation wireless communication technologies, such as 6G. The exact mechanism of RS is not yet clearly understood; however, it is widely accepted to be related to the formation and rupture of sub-stoichiometric conductive filaments (Magnéli phases) of the respective oxides upon activation. Here, we examine the switching behaviour of amorphous TiO and NiO both under the DC regime and in the high frequency mode.
View Article and Find Full Text PDF