Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts; however, their efficacy needs to be enhanced. Here we tested the hypotheses that the combination of decellularized porcine small intestinal submucosal extracellular matrix (SIS-ECM) with hCVPCs, hCMs, or dual of them (Mix, 1:1) could provide better therapeutic effects than the SIS alone, and dual hCVPCs with hCMs would exert synergic effects in cardiac repair. The data showed that the SIS patch well supported the growth of hCVPCs and hCMs.
View Article and Find Full Text PDFHuman pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great value for studies of human cardiac development, drug discovery, disease modeling, and cell therapy. However, the mixed cardiomyocyte subtypes (ventricular-, atrial-, and nodal-like myocytes) and the maturation heterogeneity of hPSC-CMs restrain their application in vitro and in vivo. Myosin light chain 2 (MYL2, encoding the ventricular/cardiac muscle isoform MLC2v protein) is regarded as a ventricular-specific marker of cardiac myocardium; however, its restricted localization to ventricles during human heart development has been questioned.
View Article and Find Full Text PDFTimely restoration of blood supply following myocardial infarction is critical to save the infarcted myocardium, while reperfusion would cause additional damage. Strontium ions have been shown to promote angiogenesis, but it is unknown whether they can save the damaged myocardium. We report that myocardial ischemia/reperfusion (I/R)-induced functional deterioration and scar formation were notably attenuated by injection of strontium ion-containing composite hydrogels into murine infarcted myocardium at 20 minutes of reperfusion following 60 minutes of ischemia.
View Article and Find Full Text PDF