Publications by authors named "Sen-Chi Yang"

High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.

View Article and Find Full Text PDF

To investigate the effect of the initial surface roughness on the performance at the initial stage of the current-carrying friction of an elastic friction pair, experiments were conducted using a self-made current-carrying friction and wear tester. The results indicate that under the experimental conditions, the lifespan of the friction pair decreases as the surface roughness and load decrease. When the surface roughness is Ra 0.

View Article and Find Full Text PDF

High-energy structural materials (ESMs) integrate a high energy density with rapid energy release, offering promising applications in advanced technologies. In this study, a novel dual-phase TiZrWMo high-entropy alloy (HEA) was synthesized and evaluated as a potential ESM. The alloy exhibited a body-centered cubic (BCC) matrix with Mo-W-rich BCC precipitates of varying sizes, which increased proportionally with the W content.

View Article and Find Full Text PDF

The RE-M-Ge systems (RE: rare earths, M: transition group elements) contain a large number of compounds with special magnetic properties. A novel compound ErMnGe was found during the investigation on the phase diagram of the Er-Mn-Ge ternary system, and its crystal structure and magnetic properties were investigated. Powder X-ray diffraction results show that ErMnGe crystallizes in an orthorhombic YNiSi-type structure with the space group Pnma (No.

View Article and Find Full Text PDF

In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were used to prepare self-foaming expanded ceramsite (SEC), and different firing temperatures and four groups with different mixing ratios of these three raw materials were considered. Water absorption, porosity, heavy metal ion leaching, and compressive strength in the cylinder of SEC were evaluated. The chemical composition and microscopic morphology of SEC were investigated by XRD and SEM.

View Article and Find Full Text PDF

Embedding stacked HTS tapes into twisted slots is one design approach for constructing fusion conductors. This paper adopts a Cable-in-Conduit Conductor (CICC) structure, utilizing commercially REBCO coated conductors. The cable framework is made of copper and features six helically twisted slots filled with 2G HTS tapes.

View Article and Find Full Text PDF

The structure of thermoset composite laminated plates is made by stacking layers of plies with different fiber orientations. Similarly, the stiffened panel structure is assembled from components with varying ply configurations, resulting in thermal residual stresses and processing-induced deformations (PIDs) during manufacturing. To mitigate the residual stresses caused by the geometric features of corner structures and the mismatch between the stiffener-skin ply orientations, which lead to PIDs in composite-stiffened panels, this study proposes a multi-objective stacking optimization strategy based on an improved adaptive genetic algorithm (IAGA).

View Article and Find Full Text PDF

The microstructure of metallic materials plays a crucial role in determining their performance. In order to accurately predict the dynamic recrystallization (DRX) behavior and microstructural evolution during the hot deformation process of GCr15 bearing steel, a microstructural evolution model for the DRX process of GCr15 steel was established by combining the level set (LS) method with the Yoshie-Laasraoui-Jonas dislocation dynamics model. Firstly, hot compression tests were conducted on GCr15 steel using the Gleeble-1500D thermal simulator, and the hardening coefficient and dynamic recovery coefficient of the Yoshie-Laasraoui-Jonas model were derived from the experimental flow stress data.

View Article and Find Full Text PDF

La-Co-doped ferrite is widely used due to its excellent magnetic properties, but the mechanisms of La-Co doping on its phase formation and magnetic properties remain unclear. This study clarifies the phase formation mechanisms and reveals that La-Co doping reduces the formation temperatures of the intermediate phase SrFeO and thus the final SrFeO phase. This promotes complete formation of SrFeO, enhancing saturation magnetization.

View Article and Find Full Text PDF

The rheological properties of concrete paste significantly influence its tensile creep behavior. In this study, the tensile creep behavior of high-volume fly ash concrete (HVFAC) employing the same cementitious pastes was experimentally investigated, and the rheological properties of the paste containing a high volume of fly ash using the (NI) technique was investigated in order to explore the influence of the paste's rheological properties (such as micro-mechanical properties and microscopic creep) on the early-age tensile creep of HVFAC. The results demonstrated that the micro-strain of paste containing a high volume of fly ash (HVFA) showed a larger value than that without fly ash.

View Article and Find Full Text PDF

The shift fork shaft is a key component in transmissions, connecting the shift fork in order to adjust the gear engagement. This study investigates the effects of different welding sequences on deformation and residual stress during plasma welding of the shift fork shaft. A temperature-displacement coupled finite element method, using ABAQUS simulation software and a double ellipsoid heat source model, was employed for the numerical analysis.

View Article and Find Full Text PDF

(FeCoNi)A high-entropy alloy (HEA) is a new material with a strength similar to that of commercial Q235 structural steel, and its elongation is nearly three times greater than that of Q235 steel. Studying the welding process of the (FeCoNi)Al HEA and Q235 steel is expected to further expand the application range of commercial Q235 structural steel and provide a foundation for the engineering application of the (FeCoNi)Al HEA. This study focuses on the dissimilar welded components of (FeCoNi)Al HEA and Q235 steel and analyzes the forming quality, microstructure, and mechanical properties of dissimilar welded samples under different currents.

View Article and Find Full Text PDF

The Diamond lattice cylindrical shell (Diamond LCS) was proposed by a mapping approach based on the triply periodic minimal surfaces (TPMS). The finite element models were built and their accuracy was verified by experimental results. Parameter studies were carried out to investigate the effect of geometric and loading parameters on the bending properties of the Diamond LCSs by the finite element model.

View Article and Find Full Text PDF

Laminated bamboo (LB), as a novel eco-friendly composite material with a high strength-to-weight ratio, has garnered increasing interest. However, there is a gap in comprehending the impact of size on the tensile properties of LB, particularly tensile strength and modulus. In contrast with conventional materials such as concrete and wood, which have specified specimen sizes and size effect factors to address performance variances linked to size, LB lacks such standards and references.

View Article and Find Full Text PDF

In this study, a titanium alloy torsional spring used in aviation was taken as the research subject. Aiming at the fatigue life prediction problem of this spring, the life analysis of the titanium alloy torsional spring was performed using a customized UMAT subroutine based on the theory of continuous damage mechanics. Several sets of life prediction models and tests were compared.

View Article and Find Full Text PDF

The size of comb cells is a key factor influencing the body size of honey bee workers. Comb cells and the body size of Chinese honey bee workers are smaller than those of Italian honey bee workers. To increase the size of Chinese honey bee workers, this study used newly built combs from Chinese honey bee colonies (control group) and Italian honey bee colonies (treatment group).

View Article and Find Full Text PDF

The horned-gall aphid, , is the most economically valuable Chinese gallnut aphid species, playing a decisive role in the production of Chinese gallnuts. The method of cultivating the gallnut species with artificial moss and increasing the yield of gallnuts after inoculation has been applied in the main producing areas of Chinese gallnuts. However, it is still unclear whether artificial cultivation affects the fecundity and gall-forming effect of .

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphate insecticide that is extensively utilized globally due to its effectiveness against over 200 pest species. CPF exhibits its toxicity primarily through the inhibition of the acetylcholinesterase (AChE) enzyme, while mitochondrial damage and dysfunction have also been observed. The present study quantified the transcript levels of mitochondria protein-coding genes (mtPCGs) using quantitative real-time polymerase chain reaction () in samples of larvae of three dragonfly species (, , and ) under different levels of CPF stress.

View Article and Find Full Text PDF

Butterflies are highly sensitive to climate change, and , as an endangered butterfly species, is also affected by these changes. To enhance the conservation of and effectively plan its protected areas, it is crucial to understand the potential impacts of climate change on its distribution. This study utilized a MaxEnt model in combination with ArcGIS technology to predict the global potential suitable habitats of under current and future climate conditions, using the species' distribution data and relevant environmental variables.

View Article and Find Full Text PDF

(Hendel) is an invasive fruit and vegetable pest, infesting citrus, mango, carambola, etc. We observed that the posterior thoracic scutella of some adults are yellow, some light yellow, and some white in China. Compared with the races with a yellow scutellum (YS) and white scutellum (WS), the race with a light-yellow scutellum (LYS) is dominant in citrus and carambola orchards.

View Article and Find Full Text PDF

Honey bees transform nectar into honey through a combination of physical and chemical processes, with the physical process primarily involving the evaporation of excess water to concentrate the nectar. However, the factors affecting evaporation efficiency, such as evaporation duration, cell type, and bee species, remain incompletely understood. This study aimed to examine how these factors affect nectar evaporation efficiency during honey production.

View Article and Find Full Text PDF

Italian honey bees (IHBs, ) exhibit superior comb-building abilities compared with Chinese honey bees (CHBs, ), which often fail to fully utilize wax foundations, resulting in incomplete comb structures. The present study aimed to accelerate comb construction in CHB colonies using IHBs. In the experiment, IHB colonies, each with approximately 42,000 adult workers, required over four hours to construct a semi-drawn comb on CHB wax foundations.

View Article and Find Full Text PDF

The gut bacterial community plays many important roles in the production of nutrients and digestion. and (Lepidoptera: Saturniidae) are two traditional sources of human food, as well as being silk-producing insects. In the present study, the influences of rearing season (spring and autumn), silkworm species ( and ), and host plant ( and ) on gut microbiota diversity were tested using Illumina MiSeq technology.

View Article and Find Full Text PDF

The olfactory sensory system plays vital roles in daily activities, such as locating mate partners, foraging, and risk avoidance. Natural enemies can locate their prey through characteristic volatiles. However, little is known about whether prey can recognize the volatiles of their predators and if this recognition can increase the efficiency of prey escaping from predators.

View Article and Find Full Text PDF

The mitochondrial genome, highly conserved across species, is crucial for species identification, phylogenetic analysis, and evolutionary research. and , two species with significant forensic value, have been understudied in terms of genetic data. In this study, the complete mitochondrial genomes of (15,623 bp) and (15,729 bp) were sequenced and analyzed.

View Article and Find Full Text PDF