Publications by authors named "Sen Xiang"

DNA methylation is a crucial topic in bioinformatics research. Traditional wet experiments are usually time-consuming and expensive. In contrast, machine learning offers an efficient and novel approach.

View Article and Find Full Text PDF

With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day retrieval has become an inevitable trend. Nevertheless, single-modal Re-ID is no longer sufficient to meet this requirement, making Multi-Modal Data crucial in Re-ID. Consequently, a Visible-Infrared Person Re-Identification (VI Re-ID) task is proposed, which aims to match pairs of person images from the visible and infrared modalities.

View Article and Find Full Text PDF

With the proliferation of multi-modal data generated by various sensors, unsupervised multi-modal hashing retrieval has been extensively studied due to its advantages in storage, retrieval efficiency, and label independence. However, there are still two obstacles to existing unsupervised methods: (1) As existing methods cannot fully capture the complementary and co-occurrence information of multi-modal data, existing methods suffer from inaccurate similarity measures. (2) Existing methods suffer from unbalanced multi-modal learning and data semantic structure being corrupted in the process of hash codes binarization.

View Article and Find Full Text PDF

Objective: To analyze the regulatory effects and key targets of the fat-soluble components of ginseng in lung cancer.

Methods: Gas chromatography-mass spectrometry and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform were used to analyze and identify the fat-soluble components of ginseng. Network pharmacology was used to analyze the therapeutic targets of the fat-soluble components of ginseng in lung cancer and screen key proteins.

View Article and Find Full Text PDF

Light field (LF) image depth estimation is a critical technique for LF-related applications such as 3D reconstruction, target detection, and tracking. The refocusing property of LF images provide rich information for depth estimations; however, it is still challenging in cases of occlusion regions, edge regions, noise interference, etc. The epipolar plane image (EPI) of LF can effectively deal with the depth estimation because of its characteristics of multidirectionality and pixel consistency-in which the LF depth estimations are converted to calculate the EPI slope.

View Article and Find Full Text PDF

Metal-organic framework (MOF) crystals are useful in a vast area of applications because of their unique chemical and physical properties. Manufacturing of an integrated MOF membrane with 3D nanoarchitectures on the surface is especially important for their applications. However, as MOF crystals usually exist as powdery crystals, fabrication of their large area, monolithic, and high-resolution patterns is challenging.

View Article and Find Full Text PDF

Depth estimation is a fundamental task in light field (LF) related applications. However, conventional light field suffers from the lack of features, which introduces depth ambiguity and heavy computation load to depth estimation. In this paper, we introduce phase light field (PLF), which uses sinusoidal fringes as patterns and the latent phases as the codes.

View Article and Find Full Text PDF

The possible molecular mechanisms regulating sorghum callus regeneration were revealed by RNA-sequencing. Plant callus regeneration has been widely applied in agricultural improvement. Recently, callus regeneration has been successfully applied in the genetic transformation of sorghum by using immature sorghum embryos as explants.

View Article and Find Full Text PDF

Gastric cancer (GC) is the fifth most common cancer worldwide and one of the most aggressive cancers in China. Glypican 6 is highly expressed in gastric adenocarcinoma and may act as a diagnostic and prognostic marker; however, the functional importance and molecular mechanism of glypican 6 in GC remains unclear. In the current study, we aimed to reveal the function and mechanism of glypican 6 in two GC cell lines: MKN-45 and SGC-7901.

View Article and Find Full Text PDF

Phase unwrapping is a necessary step in fringe-projection profilometry that produces accurate depth maps. However, the original wrapped phase is often corrupted by errors, and thus conventional spatial unwrapping suffers from error propagation, such as scanline-based unwrapping, and high complexity, such as quality-guided methods. In this paper, we propose a fast and robust spatial unwrapping method called multi-anchor scanline unwrapping (MASU).

View Article and Find Full Text PDF

Occlusion is one of the most important issues in light-field depth estimation. In this paper, we propose a light-field multi-occlusion model with the analysis of light transmission. By the model, occlusions in different views are discussed separately.

View Article and Find Full Text PDF

A subcellular organelle-targeted delivery of anti-cancer drugs is a promising strategy to maximize the anti-cancer effects and minimize the adverse effects. Herein, we prepared a mitochondria-targeted drug delivery nanoplatform based on IR780 iodide (IR780) and titanium disulfide (TiS) nanosheets. Due to the large specific surface area of TiS nanosheets, the nanoplatform could highly load anti-cancer drug resveratrol (RV).

View Article and Find Full Text PDF

In this paper, we propose a novel profilometry scheme to acquire high quality depth, where only a single shot of a monochromatic pattern is utilized. We design a band-wise pattern consisting of fringe bands spatially modulated with coprime periods. After that, with the designed pattern, depth is obtained in a hybrid manner, where both phase-based profilometry and active stereo are incorporated.

View Article and Find Full Text PDF

The quality of depth is crucial in all depth-based applications. Unfortunately, the error-free ground truth is often unattainable for depth. Therefore, no-reference quality assessment is very much desired.

View Article and Find Full Text PDF

Tyrosine kinase inhibitors (TKI)-resistant mutation in epidermal growth factor receptor's (EGFR) kinase domain is an important anomaly to look into. Studying the mutations at atomic level using molecular dynamics simulations gave us an insight into the architectural changes happening at the microscopic level. The knowledge was used to design new TKI whose function is devoid of the affect of the mutations in kinase domain.

View Article and Find Full Text PDF

A new modification method for glass slides was developed and applied to make ThinPrep Pap smears, in order to increase the adhesion ability of cervical exfoliative cells. 3-glycidyloxypropyl trimethoxysilane (GOPS) was coated on the glass slides firstly on the slides, then poly-L-lysine (PLL) was covalently modified onto the above epoxy-terminated slides to form GOPS-PLL double decorated slides. The modified slides were characterized using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).

View Article and Find Full Text PDF

In this work, two different deposition methods of 3-aminopropyltriethoxysilane (APTES) on glass slides were compared in order to study the adhesion effect of cervical exfoliated cells on smear slides. Glass slides were modified by vapor-phase deposition (V-D) and liquid-phase deposition (L-D), respectively. The topographic images and amine density of the modified slides were investigated by using atomic force microscopy, UV-vis spectroscopy and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF