Dense hydrous magnesium silicate MgSiO_{4}H_{2} is widely regarded as a primary water carrier into the deep Earth. However, the stability fields of MgSiO_{4}H_{2} based on the prevailing structure model are narrower than experimental results at relevant pressure and temperature (P-T) conditions, casting doubts about this prominent mineral as a water carrier into the great depths of the Earth. Here, we report on an advanced structure search that identifies two new crystal structures, denoted as α- and β-MgSiO_{4}H_{2}, that are stable over unprecedentedly wide P-T conditions of 17-68 GPa and up to 1860 K, covering the entire experimentally determined range.
View Article and Find Full Text PDFSuperconductivity and magnetism are often antagonistic in quantum matter, although their intertwining has long been considered in frustrated-lattice systems. Here we utilize scanning tunnelling microscopy and muon spin resonance to demonstrate time-reversal symmetry-breaking superconductivity in kagome metal Cs(V, Ta)Sb, where the Cooper pairing exhibits magnetism and is modulated by it. In the magnetic channel, we observe spontaneous internal magnetism in a fully gapped superconducting state.
View Article and Find Full Text PDFAlzheimer's disease (AD), a prevalent cognitive disorder among the elderly, is frequently linked to the abnormal accumulation of myloid-β (Aβ), which is mainly as a result of neuronal death and inflammation. Diosmin, a flavonoid, is considered a potential drug for the treatment of AD. Our study aimed to uncover the molecular mechanism of diosmin in AD therapy.
View Article and Find Full Text PDFBackground: Crocin has a good prospect in the treatment of Alzheimer's disease (AD), but the mechanisms underlying its neuroprotective effects remain elusive. This study aimed to investigate the neuroprotective effects of Crocin and its underlying mechanisms in AD.
Methods: AD mice were set up by injecting Aβ solution into the hippocampus.
Background: Alzheimer's disease (AD) is a common degenerative brain disorder with limited therapeutic options. Curcumin (Cur) exhibits neuroprotective function in many diseases. We aimed to explore the role and mechanism of Cur in AD.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia, and ginsenoside Rg2 (Rg2) is proven to inhibit AD's progression. This study investigates the potential benefits of Rg2 treatment on 3xTg-AD mice. Following 6 weeks of gavage treatment, Rg2-treated 3xTg-AD mice exhibited improved spatial recognition memory behaviors, regional cerebral blood flow, and histopathological injury of the hippocampus, which were observed through a Y-maze test, laser Doppler flowmetry, and hematoxylin-eosin staining.
View Article and Find Full Text PDFUneven lighting conditions often occur during real-life photography, such as images taken at night that may have both low-light dark areas and high-light overexposed areas. Traditional algorithms for enhancing low-light areas also increase the brightness of overexposed areas, affecting the overall visual effect of the image. Therefore, it is important to achieve differentiated enhancement of low-light and high-light areas.
View Article and Find Full Text PDFRecent experiments report a charge density wave (CDW) in the antiferromagnet FeGe, but the nature of the charge ordering and the associated structural distortion remains elusive. We discuss the structural and electronic properties of FeGe. Our proposed ground state phase accurately captures atomic topographies acquired by scanning tunneling microscopy.
View Article and Find Full Text PDFPairing Li-free transition-metal-based cathodes (MX) with Li-metal anodes is an emerging trend to overcome the energy-density limitation of current rechargeable Li-ion technology. However, the development of practical Li-free MX cathodes is plagued by the existing notion of low voltage due to the long-term overlooked voltage-tuning/phase-stability competition. Here, we propose a p-type alloying strategy involving three voltage/phase-evolution stages, of which each of the varying trends are quantitated by two improved ligand-field descriptors to balance the above contradiction.
View Article and Find Full Text PDFCrystal structure prediction has been a subject of topical interest but remains a substantial challenge especially for complex structures as it deals with the global minimization of the extremely rugged high-dimensional potential energy surface. In this paper, a symmetry-orientated divide-and-conquer scheme was proposed to construct a symmetry tree graph, where the entire search space is decomposed into a finite number of symmetry dependent subspaces. An artificial intelligence-based symmetry selection strategy was subsequently devised to select the low-lying subspaces with high symmetries for global exploration and in-depth exploitation.
View Article and Find Full Text PDFBackground: Tenecteplase is a modified recombinant tissue-plasminogen activator, which is effective and safe in the treatment of acute ischemic stroke. However, the therapeutic dose of tenecteplase has been controversial. The purpose of this study is to systematically investigate the efficacy and safety of different doses of tenecteplase thrombolytic therapy for acute ischemic stroke.
View Article and Find Full Text PDFIn view of poor hydrothermal resistance of impregnation prepared catalysts (Cu5Ce5W9Ti-I), this paper aims to enhance thermal and hydrothermal resistance of Cu/Ce based catalysts for Hg oxidation via flame synthesis technology. The result found that the flame synthesis method could form nanoscale Cu10Ce10W9Ti-F particles with smaller lattice size (8-25 nm), more stable carrier structure and more oxygen vacancies. The inter-doping and inter-substitution of Ce, Cu and Ti oxides created more oxygen vacancies (Ce) and L-sites (O).
View Article and Find Full Text PDFThe frequency shifts and lattice dynamics to unveil the vibrational properties of platinum diselenide (PtSe) are investigated using pressure-dependent polarized Raman scattering at room temperature up to 25 GPa. The two phonon modes E and A display similar hardening trends; both the Raman peak positions and full widths at half-maximum have distinct mutation phenomena under high pressure. Especially, the split E mode at 4.
View Article and Find Full Text PDFThe competition between SO and elemental mercury (Hg) for active sites was an important factor for suppressing the Hg oxidation properties of catalysts. There were obvious differences in properties of basicity and acidity between SO and Hg. Raising the SO resistance via adjusting the basicity and acidity sites of catalysts was promising for reducing the competition between SO and Hg.
View Article and Find Full Text PDFIn-situ high-pressure synchrotron X-ray powder diffraction studies up to 21 GPa of CVD-grown silicon 2D-nanosheets establish that the structural phase transitions depend on size and shape. For sizes between 9.3(7) nm and 15.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2017
Titanium dioxide has been widely used as an efficient transition metal oxide photocatalyst. However, its photocatalytic activity is limited to the ultraviolet spectrum range due to the large bandgap beyond 3 eV. Efforts to reduce the bandgap to achieve a broader spectrum range of light absorption have been successfully attempted via the experimental synthesis of dopant-free metastable surface structures of rutile-type TiO (011) 2 × 1.
View Article and Find Full Text PDFIschemia-induced brain damage leads to apoptosis like delayed neuronal death in selectively vulnerable regions, which could further result in irreversible damages. Previous studies have demonstrated that neurons in the CA1 area of hippocampus are particularly sensitive to ischemic damage. Atorvastatin (ATV) has been reported to attenuate cognitive deficits after stroke, but precise mechanism for neuroprotection remains unknown.
View Article and Find Full Text PDF