Colloids Surf B Biointerfaces
June 2019
Electrospun gelatin nanofibrous matrix encapsulating ciprofloxacin (CIP)/hydroxypropyl-beta-cyclodextrin (HPβCD)-inclusion complex (IC) was produced via electrospinning method. Computational modeling indicated that van der Waals forces are the most significant driving forces for the complexation and hydrophobic moiety (piperazinyl) of CIP, which was included in the cavity of HPβCD. The FTIR and XRD studies indicated the formation of CIP/HPβCD host/guest complexation, FTIR also suggested that hydrophobic moiety of CIP is in the HPβCD cavity in parallel with the computational modeling results.
View Article and Find Full Text PDFThymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1).
View Article and Find Full Text PDFVanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w).
View Article and Find Full Text PDFDespite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000-130,000 nm(2)) interfaces formed by gold islands on graphite.
View Article and Find Full Text PDF