Publications by authors named "Semkina A"

Background: There are currently 2.5 million people economically inactive in the UK due to sickness. The government is considering a range of new initiatives to bring them back into the workforce; however, a lack of occupational health (OH) professionals, who play an important part in the recovery of physical and mental conditions that would otherwise inhibit employees from working, is hindering these efforts.

View Article and Find Full Text PDF
Article Synopsis
  • Neutrophils show potential for delivering nanodrugs to tumors, with this study focusing on how they internalize different types of nanoparticles, like liposomes and PLGA.
  • Various techniques were used, including microscopy and flow cytometry, to assess how well neutrophils take up these nanoparticles and how cultivation conditions affect this process.
  • Results indicated that while all nanoparticles were taken up, the mechanisms varied; notably, the presence of plasma and specific immunoglobulins were crucial for the internalization of PLGA nanoparticles, highlighting the role of the external environment in enhancing drug delivery efficacy.
View Article and Find Full Text PDF

A new gene-cell construct expressing nerve growth factor (NGF) has been developed. After obtaining engineered adenovectors Ad5-RGD-CAG-NGF and Ad5-RGD-CAG-EGFP, transduction efficiency and transgene expression were studied and multiplicity of infection was determined. The efficacy of transduced human olfactory ensheathing cells expressing NGF in restoring motor activity in rats has been shown in a limited period of time.

View Article and Find Full Text PDF

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.

View Article and Find Full Text PDF

Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state.

View Article and Find Full Text PDF

Human glioblastoma multiforme (GBM) is a primary malignant brain tumor, a radically incurable disease characterized by rapid growth resistance to classical therapies, with a median patient survival of about 15 months. For decades, a plethora of approaches have been developed to make GBM therapy more precise and improve the diagnosis of this pathology. Targeted delivery mediated by the use of various molecules (monoclonal antibodies, ligands to overexpressed tumor receptors) is one of the promising methods to achieve this goal.

View Article and Find Full Text PDF

Magnetic nanoparticles based on iron oxide attract researchers' attention due to a wide range of possible applications in biomedicine. As synthesized, most of the magnetic nanoparticles do not form the stable colloidal solutions that are required for the evaluation of their interactions with cells or their efficacy on animal models. For further application in biomedicine, magnetic nanoparticles must be further modified with biocompatible coating.

View Article and Find Full Text PDF

We developed recombinant variants of oncolytic vaccinia virus LIVP strain expressing interleukin-15 (IL-15) or its receptor subunit alpha (IL-15Rα) to stimulate IL-15-dependent immune cells. We evaluated their oncolytic activity either alone or in combination with each other and using the murine CT26 colon carcinoma and 4T1 breast carcinoma models. We demonstrated that the admixture of these recombinant variants could promote the generation of the IL-15/IL-15Rα complex.

View Article and Find Full Text PDF

Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine kinase-deficient vaccinia virus (VV, Lister strain), recombinant variants encoding bacterial flagellin (subunit B) of (LIVP-FlaB-RFP), firefly luciferase (LIVP-Fluc-RFP) or red fluorescent protein (LIVP-RFP) were developed.

View Article and Find Full Text PDF

Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position.

View Article and Find Full Text PDF

A design of Pt(IV) prodrugs with tumor cell targeting moieties leading to increased selectivity is of interest. Herein, we designed a novel Pt(IV) prodrugs with COX-inhibitor naproxen, long-chain hydrophobic stearic acid moiety and biotin as axial ligands. We have established that for Pt(IV) prodrugs with biotin and naproxen or stearate in axial position, the lipophilicity rather than biotin receptors expression is the main factor of cytotoxicity.

View Article and Find Full Text PDF

Predicting the ability of nanoparticles (NP) to access the tumor is key to the success of chemotherapy using nanotherapeutics. In the present study, the ability of the dual NP-based theranostic system to accumulate in the tumor was evaluated in vivo using intravital microscopy (IVM) and MRI. The system consisted of model therapeutic doxorubicin-loaded poly(lactide-co-glycolide) NP (Dox-PLGA NP) and novel hybrid Ce-doped maghemite NP encapsulated within the HSA matrix (hMNP) as a supermagnetic MRI contrasting agent.

View Article and Find Full Text PDF

Gold-containing nanoparticles are proven to be an effective radiosensitizer in the radiotherapy of tumors. Reliable imaging of nanoparticles in a tumor and surrounding normal tissues is crucial both for diagnostics and for nanoparticle application as radiosensitizers. The FeO core was introduced into gold nanoparticles to form a core/shell structure suitable for MRI imaging.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new genetically encoded material using the encapsulin system, modified to include a photoactivatable fluorescent protein (PAmCherry) as a cargo.
  • The encapsulin shells, which were isolated from human 293T cells, can be internalized by macrophages while clearly displaying the fluorescent signal.
  • This genetically encoded nanocarrier system has the potential to serve as a platform for the targeted delivery of protein and peptide therapeutics in laboratory settings.
View Article and Find Full Text PDF

The magneto-mechanical approach is a powerful technique used in many different applications in biomedicine, including remote control enzyme activity, cell receptors, cancer-selective treatments, mechanically-activated drug releases, etc. This approach is based on the use of a combination of magnetic nanoparticles and external magnetic fields that have led to the movement of such nanoparticles with torques and forces (enough to change the conformation of biomolecules or even break weak chemical bonds). However, despite many theoretical and experimental works on this topic, it is difficult to predict the magneto-mechanical effects in each particular case, while the important results are scattered and often cannot be translated to other experiments.

View Article and Find Full Text PDF

We report herein a Pt(IV) prodrug with metronidazole in axial positions -. The nitroaromatic axial ligand was conjugated with a cisplatin scaffold to irreversibly reduce under hypoxic conditions, thereby retaining the Pt(IV) prodrug in the area of hypoxia. X-ray near-edge adsorption spectroscopy (XANES) on dried drug-preincubated tumor cell samples revealed a gradual release of cisplatin from the prodrug instead of rapid intracellular degradation.

View Article and Find Full Text PDF

We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures.

View Article and Find Full Text PDF

According to the World Health Organization, breast cancer is the most common oncological disease worldwide. There are multiple animal models for different types of breast carcinoma, allowing the research of tumor growth, metastasis, and angiogenesis. When studying these processes, it is crucial to visualize cancer cells for a prolonged time via a non-invasive method, for example, magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Neurotrophin-3 enhances the effectiveness of human olfactory ensheathing cells in improving hind limb mobility in rats with post-traumatic cysts of the spinal cord. Transplantation of olfactory ensheathing cells into spinal cord cysts reduced their size; neurotrophin-3 did not modulate this effect. Combined preparation of human olfactory ensheathing cells and neurotrophin- 3 can be used in neurosurgery for the treatment of patients with spinal cord injuries.

View Article and Find Full Text PDF

A gene-cell construct based on rat olfactory mucosa ensheathing cells transduced with an adenoviral vector encoding a mature form of brain neurotrophic factor (mBDNF) was transplanted into post-traumatic cysts of rat spinal cord. Transplantation of the gene-cell construct improved motor activity of the hind limbs and reduced the size of cysts in some animals. However, comparison of the effects of transduced and non-transduced ensheathing cells revealed no significant differences.

View Article and Find Full Text PDF

Three artificial proteins that bind the gadolinium ion (Gd3+) with tumour-specific ligands were de novo engineered and tested as candidate drugs for binary radiotherapy (BRT) and contrast agents for magnetic resonance imaging (MRI). Gd3+-binding modules were derived from calmodulin. They were joined with elastin-like polypeptide (ELP) repeats from human elastin to form the four-centre Gd3+-binding domain (4MBS-domain) that further was combined with F3 peptide (a ligand of nucleolin, a tumour marker) to form the F3-W4 block.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) are widely considered for cancer treatment, in particular for magnetic hyperthermia (MHT). Thereby, MNPs are still being optimized for lowest possible toxicity on organisms while the magnetic properties are matched for best heating capabilities. In this study, the biocompatibility of 12 nm cobalt ferrite MNPs, functionalized with citrate ions, in different dosages on mice and rats of both sexes was investigated for 30 days after intraperitoneal injection.

View Article and Find Full Text PDF

Posttraumatic spinal cord cysts are difficult to treat with medication and surgery. Gene-cell therapy is a promising area of treatment for such patients. However, optimal gene-cell construct for this therapy has not been developed.

View Article and Find Full Text PDF

Photo-induced cytotoxicity and antitumor activity of a series of dual function agents for photodynamic therapy (PDT) and fluorescent imaging based on bacteriochlorin photosensitizer conjugated with various naphthalimide fluorophores was studied in vitro using murine tumor cells of S37 sarcoma and in vivo on mice bearing murine S37 sarcoma. Upon irradiation at the absorption maximum of the photosensitizer, the activity of conjugates was as high as in the case of individual bacteriochlorin, while an additional excitation of the naphthalimide fragment led to an increase in the PDT efficacy due to resonance energy transfer from the fluorophore to photosensitizer. The fluorescence contrast and specific cytotoxic activity measurements indicate that the conjugate of bacteriochlorin with 3,4-dimethoxestyrene-substituted naphthalimide is the most promising agent for the application as theranostic in PDT.

View Article and Find Full Text PDF

In a recent research paper Dr. Suxing Jin et al. reported two multispecific PtIV complexes DNP and NP with non-steroidal anti-inflammatory drug naproxen (NPX) as the axial ligand(s).

View Article and Find Full Text PDF