Publications by authors named "Semionkin V"

The meteorite Sariçiçek, a 2015 howardite fall in Turkey, was analyzed using various physical techniques. Both the interior and the fusion crust were studied by optical and scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. The main and minor iron-bearing phases such as orthopyroxene, Ca-poor and Ca-rich clinopyroxene, chromite with hercynite, Fe and Fe ilmenite, troilite, α-Fe(Ni, Co), α-Fe(Ni, Co) and γ-Fe(Ni, Co) phases were identified.

View Article and Find Full Text PDF

The meter-scale variations of material properties of the 20-m sized Chelyabinsk meteoroid are critical for understanding why the meteoroid fragmented the way it did and caused the devastating airburst that sent over 1600 people to the hospital for treatment of glass cuts and minor injuries on February 15, 2013. From a range of differently looking unweathered meteorite fragments that were recovered shortly after the event, these material differences were probed by means of optical and scanning electron microscopy, X-ray diffraction (XRD), and the high velocity resolution Mössbauer spectroscopy. All main and some minor iron-bearing phases were identified on the basis of XRD data and Mössbauer spectra.

View Article and Find Full Text PDF

In this overview, we present the results of the study of spleen and liver tissues taken from healthy donors in comparison with those from patients with (i) non-Hodgkin B-cell lymphomas, namely, mantle cell lymphoma and marginal zone B-cell lymphoma, (ii) acute myeloid leukemia, and (iii) primary myelofibrosis. The study was carried out using Mössbauer spectroscopy and magnetization measurements for the analysis of ferritin-like iron in spleen and liver tissues. Magnetization measurements demonstrated small differences in the saturation magnetic moments and revealed additional paramagnetic components.

View Article and Find Full Text PDF

Northwest Africa (NWA) 6286 and 7857 meteorites were studied in detail by using optical microscopy, scanning electron microscopy with energy dispersion spectroscopy, X-ray diffraction, magnetization measurements and Fe Mössbauer spectroscopy with a high velocity resolution. The main and the minor iron-bearing phases were identified in both meteorites. The unit cell parameters as well as Fe and Mg cation distribution were determined for the M1 and M2 sites in silicate microcrystals.

View Article and Find Full Text PDF

Mössbauer spectra of human liver ferritin and its pharmaceutical analogues Ferrum Lek and Maltofer® measured at various temperatures within the range of 295-83K were fitted using five quadrupole doublets related to different Fe microenvironments in various layers/regions of the ferrihydrite and akaganéite iron cores. The observed anomalous temperature dependences of some Mössbauer parameters were considered as a result of low temperature structural rearrangements in different layers/regions in the iron core.

View Article and Find Full Text PDF

Ordinary chondrites from H, L and LL groups were studied using Mössbauer spectroscopy with a high velocity resolution. Mössbauer parameters of spectral components were obtained using new fitting model excluding the effect of previous misfits of troilite component. Obtained parameters were related to corresponding iron-bearing minerals in ordinary chondrites.

View Article and Find Full Text PDF

Iron oxide (magnetite and maghemite) nanoparticles developed for magnetic fluids were studied using Mössbauer spectroscopy with a high velocity resolution at 295 and 90K. The recorded Mössbauer spectra have demonstrated that usual physical models based on octahedral and tetrahedral sites were not suitable for fitting. Alternatively, the Mössbauer spectra were nicely fitted using a large number of magnetic sextets.

View Article and Find Full Text PDF

An iron-polymaltose complex, Ferrum Lek, used as antianemic drug and considered as a ferritin analogue and human liver ferritin were investigated in the temperature range of 295-90K using (57)Fe Mössbauer spectroscopy with a high velocity resolution (in 4096 channels). This study aimed to make a comparison of the Fe atom dynamics in the Ferrum Lek and ferritin iron cores by means of evaluation of the Debye temperature using the temperature dependence of the spectral center shift obtained with two different fitting procedures and the second order Doppler shift approach. The Debye temperature, evaluated as ΘD=502±24K for Ferrum Lek and ΘD=461±16K for human liver ferritin, demonstrated a very small difference in the Fe atom vibrations, reflecting a slightly smaller rigidity in the iron cores in human liver ferritin.

View Article and Find Full Text PDF

A human liver ferritin, commercial Ferrum Lek and Maltofer® samples were studied using Mössbauer spectroscopy and electron paramagnetic resonance. Two Mössbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures.

View Article and Find Full Text PDF

Comparative study of human liver ferritin and spleen tissues from healthy human and patient with primary myelofibrosis was carried out using Mössbauer spectroscopy with a high velocity resolution at 295 and 90 K and with a low velocity resolution at 20 K. The results obtained demonstrated that the iron content in patient's spleen in the form of iron storage proteins was about ten times larger than that in normal tissue. However, in the case of patient with primary myelofibrosis the magnetic anisotropy energy barrier differed from that in normal case and, probably, the iron core size was supposed to be slightly larger than that in both normal spleen tissue and normal human liver ferritin in contrast to well-known data for iron overload in patients with thalassemia accompanied by the iron-core size increase.

View Article and Find Full Text PDF

The methodological principles of velocity resolution as additional characteristic of the quality of both Mössbauer spectrometer velocity driving system and Mössbauer spectrum were briefly considered. Significantly better quality of Mössbauer spectra measured with a high velocity resolution in comparison with those measured with a low velocity resolution was demonstrated. The main advances of recent studies of iron containing biomolecules, pharmaceutical products, meteorite samples and nanoparticles using Mössbauer spectroscopy with a high velocity resolution were considered and advantages of this technique were shown.

View Article and Find Full Text PDF

Application of Mössbauer spectroscopy with a high velocity resolution (4096 channels) for comparative analysis of iron cores in a human liver ferritin and its pharmaceutically important models Imferon, Maltofer(®) and Ferrum Lek as well as in iron storage proteins in chicken liver and spleen tissues allowed to reveal small variations in the (57)Fe hyperfine parameters related to differences in the iron core structure. Moreover, it was shown that the best fit of Mössbauer spectra of these samples required different number of components. The latter may indicate that the real iron core structure is more complex than that following from a simple core-shell model.

View Article and Find Full Text PDF

Iron oxide nanoparticles, probably magnetite, as-prepared and dispersed in Copaiba oil were studied by Mössbauer spectroscopy using two different spectrometers: with a low velocity resolution (512 channels) for measurements at 295 and 21K and with a high velocity resolution (4096 channels) for measurements at 295 and 90K. The fitting of all measured spectra demonstrated that usual models applied to fit Mössbauer spectra of magnetite and maghemite particles were not suitable. Therefore, the recorded spectra were fitted using a large number of spectral components on the basis of better quality of the fit and linearity of differential spectra.

View Article and Find Full Text PDF

A comparative study of oxyhemoglobins from pig, rabbit, normal human and patients with blood system malignant diseases was performed using Mössbauer spectroscopy with a high velocity resolution at 90 K. Mössbauer spectra were fitted with the help of two models: using one quadrupole doublet (model of equivalent iron electronic structure in α- and β-subunits of hemoglobins) and superposition of two quadrupole doublets (model of non-equivalent iron electronic structure in α- and β-subunits of hemoglobins). The results obtained using both models demonstrated small variations of hyperfine parameters that were related to the heme iron state variation in different hemoglobins.

View Article and Find Full Text PDF

Mössbauer spectroscopy with a high velocity resolution was used for comparative studies of human adult, rabbit and pig oxyhemoglobins, human liver ferritin and its pharmaceutically important models Imferon and Maltofer(®) as well as liver and spleen tissues from normal and lymphoid leukemia chicken. These studies revealed small variations of Mössbauer hyperfine parameters which were related to small variations of iron electronic structure and stereochemistry in these samples.

View Article and Find Full Text PDF

Determination of the iron state in commercially manufactured iron containing vitamins and dietary supplements is important for evaluation of pharmaceuticals quality. Mössbauer (nuclear gamma-resonance) spectroscopy was used for analyzing the iron state in commercial pharmaceutical products containing ferrous fumarate (FeC(4)H(2)O(4)), ferrous sulfate (FeSO(4)), ferrous bisglycinate chelate (Ferrochel) and ferrous iron (hydrolyzed protein chelate). Mössbauer parameters and the iron states were determined for iron compounds in the studied pharmaceuticals.

View Article and Find Full Text PDF

Mössbauer spectroscopy has been used to study the hyperfine interactions in the iron cores of pharmaceutically important industrial and elaborated iron-dextran complexes (ferritin models) and human ferritin. Mössbauer spectra of frozen solutions and lyophilized samples of iron-dextran complexes at 87 K demonstrated magnetic, superparamagnetic and paramagnetic states of iron in various complexes. Mössbauer spectra of human ferritin in frozen solution and lyophilized form showed paramagnetic state of iron at 87 K.

View Article and Find Full Text PDF

The heme iron in human adult hemoglobin modified by both pyridoxal-5'-phosphate and glutaraldehyde was characterized by Mössbauer spectroscopy and compared with non-modified hemoglobin. Mössbauer spectra of the samples were measured at 87 and 295 K (1yophilized form) and at 87 K (frozen solution). The values of quadrupole splitting for the oxy-form of modified hemoglobin were found to be lower than those of the oxy-form of hemoglobin without modifications in lyophilized form and frozen solution, respectively.

View Article and Find Full Text PDF

Preliminary results of the Mössbauer effect study of human adult oxyhemoglobin in erythrocytes exposed to gamma-irradiation with doses of approximately 100, approximately 300 and approximately 600 kGy are presented. Mössbauer spectra measured at 87 K have been analyzed in two ways. At first, to fit these spectra we used the four components oxyhemoglobin, deoxyhemoglobin, hemochromes and non-heme Fe(III) compound which had been obtained earlier from Mössbauer spectra of X-irradiated oxyhemoglobin by Chevalier et al.

View Article and Find Full Text PDF

Red blood cell samples from several patients with erythremia have been studied by Mössbauer spectroscopy. Quadrupole splitting and isomer shift for oxyhemoglobin from erythremic red blood cells and those of oxyhemoglobin from normal ones differ slightly, while these hyperfine parameters for deoxyhemoglobins are the same. An additional component in Mössbauer spectra of red blood cell samples was observed in some cases of erythremia.

View Article and Find Full Text PDF

Human normal, adult and foetal oxyhaemoglobins and oxyhaemoglobins from leukaemic patients were studied, by Mössbauer spectroscopy. The estimations of quadrupole splitting delta EQ and isomer shift delta allow one to distinguish between adult, foetal and leukaemic oxyhaemoglobins. The differences in the Fe2+ electronic structure and active site molecular structure of foetal and leukaemic oxyhaemoglobins were analyzed.

View Article and Find Full Text PDF