Non ketotic hyperglycinemia (NKH) is an inborn error of glycine metabolism caused by mutations in the genes encoding glycine cleavage system proteins. Classic NKH has a neonatal onset, and patients present with severe neurodegeneration. Although glycine accumulation has been implicated in NKH pathophysiology, the exact mechanisms underlying the neurological damage and white matter alterations remain unclear.
View Article and Find Full Text PDFSulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective.
View Article and Find Full Text PDFToxicol Lett
May 2023
Inherited metabolic disorders (IMDs) are genetic disorders that cause a disruption of a specific metabolic pathway leading to biochemical, clinical and pathophysiological sequelae. While the metabolite abnormalities in body fluids and tissues can usually be defined by directed or broad-spectrum metabolomic analysis, the pathophysiology of these changes is often not obvious. Mounting evidence has revealed that secondary mitochondrial dysfunction, mainly oxidative phosphorylation impairment and elevated reactive oxygen species, plays a pivotal role in many disorders.
View Article and Find Full Text PDFMol Genet Metab Rep
December 2022
Autoimmune Disease, Multisystem, with Facial Dysmorphism (ADMFD) is an autosomal recessive disorder due to pathogenic variants in the gene. It is characterized by failure to thrive, dysmorphic facial features, developmental delay, and systemic autoimmunity that can manifest variably with autoimmune hepatitis, thyroiditis, and enteropathy, among other organ manifestations. It was originally described in 10 consanguineous Old Order Amish patients, and more recently in two patients of White British and Black German ethnicities.
View Article and Find Full Text PDFPatients with glutaric aciduria type 1 (GA1), a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) activity, commonly manifest acute encephalopathy associated with severe striatum degeneration and progressive cortical and striatal injury whose pathogenesis is still poorly known. We evaluated redox homeostasis, inflammatory response, mitochondrial biogenesis and dynamics, endoplasmic reticulum (ER)-mitochondria crosstalk, and ER stress in the brain of GCDH-deficient (Gcdh) and wild-type (Gcdh) mice fed a high Lys chow, which better mimics the human neuropathology mainly characterized by striatal lesions. Increased lipid peroxidation and altered antioxidant defenses, including decreased concentrations of reduced glutathione and increased activities of superoxide dismutase, catalase, and glutathione transferase, were observed in the striatum and cerebral cortex of Gcdh mice.
View Article and Find Full Text PDFInherited metabolic disorders (IMDs) are rare genetic conditions that affect multiple organs, predominantly the central nervous system. Since treatment for a large number of IMDs is limited, there is an urgent need to find novel therapeutical targets. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has a key role in controlling the intracellular redox environment by regulating the expression of antioxidant enzymes and several important genes related to redox homeostasis.
View Article and Find Full Text PDFGlutaric acidemia type I (GA-I) is an inborn error of metabolism of lysine, hydroxylysine, and tryptophan, caused by glutaryl-CoA-dehydrogenase (GCDH) deficiency, characterized by the buildup of toxic organic acids predominantly in the brain. After acute catabolic states, patients usually develop striatal degeneration, but the mechanisms behind this damage are still unknown. Quinolinic acid (QA), a metabolite of the kynurenine pathway, increases especially during infections/inflammatory processes, and could act synergically with organic acids, contributing to the neurological features of GA-I.
View Article and Find Full Text PDFS-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases, particularly glycine N-methyltransferase, S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies, as well as in some hepatic mtDNA depletion syndromes, whose pathogenesis of liver dysfunction is still poorly established. Therefore, in the present work, we investigated the effects of S-adenosylmethionine (AdoMet) on mitochondrial functions and redox homeostasis in rat liver. AdoMet decreased mitochondrial membrane potential and Ca retention capacity, and these effects were fully prevented by cyclosporin A and ADP, indicating mitochondrial permeability transition (mPT) induction.
View Article and Find Full Text PDFNeuroscience
September 2021
D-2-hydroxyglutaric acid (D-2-HG) accumulates and is the biochemical hallmark of D-2-hydroxyglutaric acidurias (D-2-HGA) types I and II, which comprehend two inherited neurometabolic diseases with severe cerebral abnormalities. Since the pathogenesis of these diseases is poorly established, we tested whether D-2-HG could be neurotoxic to neonatal rats. D-2-HG intracerebroventricular administration caused marked vacuolation in cerebral cortex and striatum.
View Article and Find Full Text PDFTissue accumulation and high urinary excretion of ethylmalonic acid (EMA) are found in ethylmalonic encephalopathy (EE), an inherited disorder associated with cerebral and cerebellar atrophy whose pathogenesis is poorly established. The in vitro and in vivo effects of EMA on bioenergetics and redox homeostasis were investigated in rat cerebellum. For the in vitro studies, cerebellum preparations were exposed to EMA, whereas intracerebellar injection of EMA was used for the in vivo evaluation.
View Article and Find Full Text PDFPhenylketonuria (PKU) is an inborn error of metabolism caused by phenylalanine hydroxylase (PAH) deficiency and characterized by elevated plasma levels of phenylalanine (hyperphenylalaninemia-HPA). In severe cases, PKU patients present with neurological dysfunction and hepatic damage, but the underlying mechanisms are not fully elucidated. Other forms of HPA also characterized by neurological symptoms occur in rare instances due to defects in the metabolism of the PAH cofactor tetrahydrobiopterin.
View Article and Find Full Text PDFNeurotox Res
December 2020
We investigated redox homeostasis in cerebral and peripheral tissues of wild type (WT) and glutaryl-CoA dehydrogenase knockout mice (Gcdh) submitted to inflammation induced by lipopolysaccharide (LPS) since patients with glutaric aciduria type I (GA I) manifest acute encephalopathy during catabolic events triggered by inflammation. WT and Gcdh mice fed a low (0.9%) or high (4.
View Article and Find Full Text PDFAmyloid-β oligomers (AβOs) toxicity causes mitochondrial dysfunction, leading to synaptic failure in Alzheimer's disease (AD). Considering presynaptic high energy demand and tight Ca regulation, impairment of mitochondrial function can lead to deteriorated neural activity and cell death. In this study, an AD mouse model induced by ICV (intracerebroventricular) injection of AβOs was used to investigate the toxicity of AβOs on presynaptic function.
View Article and Find Full Text PDFTissue accumulation and high urinary excretion of argininosuccinate (ASA) is the biochemical hallmark of argininosuccinate lyase deficiency (ASLD), a urea cycle disorder mainly characterized by neurologic abnormalities, whose pathogenesis is still unknown. Thus, in the present work, we evaluated the in vitro and in vivo effects of ASA on a large spectrum of oxidative stress parameters in brain of adolescent rats in order to test whether disruption of redox homeostasis could be involved in neurodegeneration of this disorder. ASA provoked in vitro lipid and protein oxidation, decreased reduced glutathione (GSH) concentrations, and increased reactive oxygen species generation in cerebral cortex and striatum.
View Article and Find Full Text PDFReticular dysgenesis is an autosomal recessive form of severe combined immunodeficiency (SCID) that usually manifests in newborns. It is a unique example of an immune deficiency that is linked to dysfunctional mitochondrial energy metabolism and caused by adenylate kinase 2 (AK2) deficiency. It is characterized by an early differentiation arrest in the myeloid lineage, impaired lymphoid maturation, and sensorineural hearing loss.
View Article and Find Full Text PDFEthylmalonic encephalopathy protein 1 (ETHE1) and molybdenum cofactor (MoCo) deficiencies are hereditary disorders that affect the catabolism of sulfur-containing amino acids. ETHE1 deficiency is caused by mutations in the ETHE1 gene, while MoCo deficiency is due to mutations in one of three genes involved in MoCo biosynthesis (MOCS1, MOCS2 and GPHN). Patients with both disorders exhibit abnormalities of the mitochondrial respiratory chain, among other biochemical findings.
View Article and Find Full Text PDFGlutaric acidemia type I (GA I) is an inherited neurometabolic disease caused by deficient activity of the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH), resulting in predominant accumulation of glutaric and 3-hydroxyglutaric acids derived from lysine (Lys), hydroxylysine, and tryptophan catabolism. GA I patients usually present progressive cortical leukodystrophy and frequently develop acute striatal degeneration during encephalopathic crises during the first three years of life. The pathophysiology of the neurodegeneration observed in GA I is still partly known, although the development of the genetic mice model of GA I (Gcdh) has contributed to clarify potential underlying mechanisms involved in brain damage in this disease.
View Article and Find Full Text PDFGlutaric acidemia type I (GA I) is a neurometabolic disorder of lysine (Lys) catabolism caused by glutaryl-CoA dehydrogenase (GCDH) deficiency. Patients are susceptible to develop acute striatum degeneration during catabolic stress situations whose underlying mechanisms are not fully established. Thus, in the present work we investigated the effects of a single intrastriatal Lys administration (1.
View Article and Find Full Text PDFVery long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common defect of mitochondrial long-chain fatty acid β-oxidation. Patients present with heterogeneous clinical phenotypes affecting heart, liver and skeletal muscle predominantly. The full pathophysiology of the disease is unclear and patient response to current therapeutic regimens is incomplete.
View Article and Find Full Text PDFS-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats.
View Article and Find Full Text PDFGlutaric acidemia type I (GA-I) is a neurometabolic disease caused by deficient activity of glutaryl-CoA dehydrogenase (GCDH) that results in accumulation of metabolites derived from lysine (Lys), hydroxylysine, and tryptophan catabolism. GA-I patients typically develop encephalopatic crises with striatal degeneration and progressive white matter defects. However, late onset patients as well as Gcdh-/- mice only suffer diffuse myelinopathy, suggesting that neuronal death and white matter defects are different pathophysiological events.
View Article and Find Full Text PDFNeurotox Res
April 2018
Tissue accumulation of L-2-hydroxyglutaric acid (L-2-HG) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-2-HGA), a rare neurometabolic inherited disease characterized by neurological symptoms and brain white matter abnormalities whose pathogenesis is not yet well established. L-2-HG was intracerebrally administered to rat pups at postnatal day 1 (P1) to induce a rise of L-2-HG levels in the central nervous system (CNS). Thereafter, we investigated whether L-2-HG in vivo administration could disturb redox homeostasis and induce brain histopathological alterations in the cerebral cortex and striatum of neonatal rats.
View Article and Find Full Text PDFMitochondrial complex I (CI) deficiency is the most frequent cause of oxidative phosphorylation (OXPHOS) disorders in humans. In order to benchmark the effects of CI deficiency on mitochondrial bioenergetics and dynamics, respiratory chain (RC) and endoplasmic reticulum (ER)-mitochondria communication, and superoxide production, fibroblasts from patients with mutations in the ND6, NDUFV1 or ACAD9 genes were analyzed. Fatty acid metabolism, basal and maximal respiration, mitochondrial membrane potential, and ATP levels were decreased.
View Article and Find Full Text PDFNeurotox Res
April 2018
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH) activity. Patients usually present progressive cortical leukodystrophy and commonly develop acute bilateral striatal degeneration mainly during infections that markedly worse their prognosis. A role for quinolinic acid (QA), a key metabolite of the kynurenine pathway, which is activated during inflammatory processes, on the pathogenesis of the acute striatum degeneration occurring in GA I was proposed but so far has not yet been evaluated.
View Article and Find Full Text PDF