Publications by authors named "Sementchenko V"

ETS is a family of transcriptional regulators with functions in most biological processes. Dysregulated ETS factor function leads to altered expression of multiple genes that play critical roles in many of the processes required for cancer progression. While the Ets family gene, prostate-derived ETS factor (PDEF), is expressed in epithelial tissues including prostate, breast, and colon, PDEF protein expression has been found to be reduced or lost during prostate and breast cancer progression.

View Article and Find Full Text PDF

Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. We used whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos.

View Article and Find Full Text PDF

Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated.

View Article and Find Full Text PDF

Regions of the genome not coding for proteins or not involved in cis-acting regulatory activities are frequently viewed as lacking in functional value. However, a number of recent large-scale studies have revealed significant regulated transcription of unannotated portions of a variety of plant and animal genomes, allowing a new appreciation of the widespread transcription of large portions of the genome. High-resolution mapping of the sites of transcription of the human and fly genomes has provided an alternative picture of the extent and organization of transcription and has offered insights for biological functions of some of the newly identified unannotated transcripts.

View Article and Find Full Text PDF

The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes.

View Article and Find Full Text PDF

Many animal and plant genomes are transcribed much more extensively than current annotations predict. However, the biological function of these unannotated transcribed regions is largely unknown. Approximately 7% and 23% of the detected transcribed nucleotides during D.

View Article and Find Full Text PDF

Dorsal-ventral (DV) patterning of the Drosophila embryo is initiated by Dorsal, a sequence-specific transcription factor distributed in a broad nuclear gradient in the precellular embryo. Previous studies have identified as many as 70 protein-coding genes and one microRNA (miRNA) gene that are directly or indirectly regulated by this gradient. A gene regulation network, or circuit diagram, including the functional interconnections among 40 Dorsal target genes and 20 associated tissue-specific enhancers, has been determined for the initial stages of gastrulation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate posttranscriptional gene activity by binding to specific sequences in the 3' UTRs of target mRNAs. A number of metazoan miRNAs have been shown to exhibit tissue-specific patterns of expression. Here, we investigate the possibility that localized expression is mediated by tissue-specific enhancers, comparable to those seen for protein-coding genes.

View Article and Find Full Text PDF

Sites of transcription of polyadenylated and nonpolyadenylated RNAs for 10 human chromosomes were mapped at 5-base pair resolution in eight cell lines. Unannotated, nonpolyadenylated transcripts comprise the major proportion of the transcriptional output of the human genome. Of all transcribed sequences, 19.

View Article and Find Full Text PDF
Article Synopsis
  • ETS1 is a transcription factor involved in key cellular processes like cell growth and movement, and its function is influenced by various protein interactions.
  • A study revealed that SP100 interacts with ETS1, affecting its activity and altering the morphology of nuclear bodies within the cell.
  • SP100 negatively regulates ETS1's ability to activate certain genes linked to cancer invasion, showcasing its role in controlling processes relevant to breast cancer cell invasion.
View Article and Find Full Text PDF

In the past decade, microarray technology has become a major tool for high-throughput comprehensive analysis of gene expression, genotyping and resequencing applications. Currently, the most widely employed application of high-density oligonucleotide arrays (HDOAs) involves monitoring changes in gene expression. This application has been carried out in a variety of organisms ranging from Escherichia coli to humans.

View Article and Find Full Text PDF

Using high-density oligonucleotide arrays representing essentially all nonrepetitive sequences on human chromosomes 21 and 22, we map the binding sites in vivo for three DNA binding transcription factors, Sp1, cMyc, and p53, in an unbiased manner. This mapping reveals an unexpectedly large number of transcription factor binding site (TFBS) regions, with a minimal estimate of 12,000 for Sp1, 25,000 for cMyc, and 1600 for p53 when extrapolated to the full genome. Only 22% of these TFBS regions are located at the 5' termini of protein-coding genes while 36% lie within or immediately 3' to well-characterized genes and are significantly correlated with noncoding RNAs.

View Article and Find Full Text PDF

Ets transcription factors control multiple biological processes, including cell proliferation, differentiation, apoptosis, angiogenesis, transformation, and invasion. Pdef is an Ets transcription factor originally identified in prostate tissue. We demonstrate that human Pdef is expressed at high levels primarily in tissues with high epithelial cell content, including prostate, colon, and breast.

View Article and Find Full Text PDF

The Ets family of transcription factors regulates many biological processes. Within the Ets family are a subset of proteins that have epithelial restricted expression patterns, both in tissues and cell lines. These Epithelial-specific Ets (Ese) factors, cluster into two groups based on the sequence of the Ets DNA binding domain: (i) Ese1, Ese2 and Ese3, and (ii) the more divergent, Pdef.

View Article and Find Full Text PDF

Extracellular matrix (ECM) production and turnover are tightly controlled under normal physiological conditions. Ets factors regulate matrix turnover by activating transcription of several metalloproteinases (MMPs) and are frequently overexpressed in aggressive tumors and arthritis. Because of the prominent role of transforming growth factor beta (TGF-beta) in ECM synthesis, this study was undertaken to determine the possible interactions between Ets1 and the TGF-beta pathway.

View Article and Find Full Text PDF

Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes.

View Article and Find Full Text PDF

The contribution of the ETS2 transcription factor to the transformed state in prostate cancer cells has been assessed. Northern blot analysis easily detects ETS2 in DU145 and PC3, high grade human prostate cell lines, but ETS2 is not present in lower grade LNCaP cells. Stable transfection of PC3 and DU145 prostate cell lines with an antisense ETS2 vector or with a dominant negative ETS2 mutant significantly reduced the ability of DU145 and PC3 cells to form large colonies in soft agar.

View Article and Find Full Text PDF