To develop and validate a dose-of-the-day (DOTD) treatment plan verification procedure for liver and pancreas cancer patients treated with an magnetic resonance (MR)-Linac system.DOTD was implemented as an automated process that uses 3D datasets collected during treatment delivery. Particularly, the DOTD pipeline's input included the adapt-to-shape (ATS) plan-i.
View Article and Find Full Text PDFWhat treatment options are there for patients having uveal melanoma? A randomized, prospective, multi-institutional clinical trial (COMS) showed no difference in survival between brachytherapy and enucleation for medium-sized lesions. With the obvious benefit of retaining the eye, brachytherapy has flourished and many different approaches have been developed such as low-dose-rate sources using alternate low-energy photon-emitting radionuclides, different plaque designs and seed-loading techniques, high-dose-rate brachytherapy sources and applicators, and low- and high-dose-rate beta-emitting sources and applicators. There also have been developments of other radiation modalities like external-beam radiotherapy using linear accelerators with high-energy photons, particle accelerators for protons, and gamma stereotactic radiosurgery.
View Article and Find Full Text PDFTo investigate the effect of using non-uniform loading and notched plaques on dose distribution for eye plaques. Using EGSnrc Monte Carlo (MC) simulations, we investigate eye plaque dose distributions in water and in an anatomically representative eye phantom. Simulations were performed in accordance with TG43 formalism and compared against full MC simulations which account for inter-seed and inhomogeneity effects.
View Article and Find Full Text PDFPurpose: To describe a comprehensive workflow for MRI-guided online adaptive stereotactic body radiation therapy (SBRT) specific to upper gastrointestinal cancer patients with abdominal compression on a 1.5T MR-Linac system. Additionally, we discuss the workflow's clinical feasibility and early experience in the case of 16 liver and pancreas patients.
View Article and Find Full Text PDFPurpose: The purpose of this study is to improve dose distribution and organ-at-risk sparing during gynecologic HDR brachytherapy with patient-specific applicators. The majority of applicators used today are generic in design and do not allow for dose modulation for patient-specific shaping of dose distributions. Their performance might be adjusted with commercially available wedge shields; however, this provides dose modulation in the orthogonal plane only and does not allow for variation along the length of the applicator.
View Article and Find Full Text PDFThe World Health Organization (WHO) issued guidelines for the regulatory evaluation of biosimilars in 2009 and has provided considerable effort toward helping member states implement the evaluation principles in the guidelines into their regulatory practices. Despite this effort, a recent WHO survey (conducted in 2019-2020) has revealed four main remaining challenges: unavailable/insufficient reference products in the country; lack of resources; problems with the quality of some biosimilars (and even more with noninnovator products); and difficulties with the practice of interchangeability and naming of biosimilars. The following have been identified as opportunities/solutions for regulatory authorities to deal with the existing challenges: (1) exchange of information on products with other regulatory authorities and accepting foreign licensed and sourced reference products, hence avoiding conducting unnecessary (duplicate) bridging studies; (2) use of a "reliance" concept and/or joint review for the assessment and approval of biosimilars; (3) review and reassessment of the products already approved before the establishment of a regulatory framework for biosimilar approval; and (4) setting appropriate regulatory oversight for good pharmacovigilance, which is essential for the identification of problems with products and establishing the safety and efficacy of interchangeability of biosimilars.
View Article and Find Full Text PDFThe first global workshop on implementation of the WHO guidelines on procedures and data requirements for changes to approved biotherapeutic products adopted by the WHO Expert Committee in 2018 was held in June 2019. The workshop participants recognized that the principles based on sound science and the potential for risk, as described in the WHO Guidelines on post-approval changes, which constitute the global standard for product life-cycle management are providing clarity and helping national regulatory authorities in establishing guidance while improving time-lines for an efficient regulation of products. Consequently, the regulatory situation for post-approval changes and guideline implementation is changing but there is a disparity between different countries.
View Article and Find Full Text PDFThe purpose of this investigation is to improve intra-fractional motion detection during cranial stereotactic radiosurgery with a novel capacitive motion sensing (CMS) system. Previous work showed that a capacitive detection system, based on a MPR121 capacitance-to-digital converter, provided a number of advantages over existing patient imaging systems used in the clinic, by uniquely offering ionizing-radiation-free and continuous monitoring without modification to the immobilization mask or treatment room. However, in order to provide submillimeter detection accuracy, the MPR121-based CMS system required relatively large sensors in close proximity to the patient.
View Article and Find Full Text PDFWe investigate how the electronic structure of amorphous lead oxide (a-PbO) films deposited on ITO substrate is changed after annealing at various temperatures. Both experimental soft X-ray spectroscopic and density functional theory (DFT) based computational techniques are used to explore the electronic structure of this material. X-ray emission, resonant X-ray inelastic scattering, and X-ray absorption spectroscopic techniques are employed to directly probe the valence and conduction bands.
View Article and Find Full Text PDFA 60-year-old African-American male presented to the emergency department with abdominal pain and distention associated with decreased appetite and weight loss for several weeks. A computed tomography (CT) scan of the abdomen and pelvis showed an 8 cm mesenteric mass with surrounding stranding and poorly defined borders. The patient underwent exploratory laparotomy and complete resection of the mass since the frozen section could not give a definite diagnosis.
View Article and Find Full Text PDFPresence of a signal lag is a bottle neck of performance for many non-crystalline materials, considered for dynamic radiation sensing. Due to inadequate lag-related temporal performance, polycrystalline layers of CdZnTe, PbI, HgI and PbO are not practically utilized, despite their superior X-ray sensitivity and low production cost (even for large area detectors). In the current manuscript, we show that a technological step to replace nonhomogeneous disorder in polycrystalline PbO with homogeneous amorphous PbO structure suppresses signal lag and improves time response to X-ray irradiation.
View Article and Find Full Text PDFWe investigated the electronic structure of Lead Oxide (PbO) - one of the most promising photoconductor materials for direct conversion x-ray imaging detectors, using soft x-ray emission and absorption spectroscopy. Two structural configurations of thin PbO layers, namely the polycrystalline and the amorphous phase, were studied, and compared to the properties of powdered α-PbO and β-PbO samples. In addition, we performed calculations within the framework of density functional theory and found an excellent agreement between the calculated and the measured absorption and emission spectra, which indicates high accuracy of our structural models.
View Article and Find Full Text PDFWhile polycrystalline lead oxide (poly-PbO) is known to be one of the most promising photoconductors for utilization in X-ray detectors, its major performance parameters such as charge yield and mobility-lifetime product (μτ) are still not well established and require further investigation. Combining the conventional X-ray induced photocurrent and pulse height spectroscopy techniques we examine the X-ray photogeneration and recombination processes in poly-PbO. The measurements indicate that the amount of energy required to release a single electron hole pair W (inverse of charge yield) strongly depends on applied electric field and at 10 V/μm reaches ~20 eV/ehp.
View Article and Find Full Text PDFAlthough polycrystalline lead oxide (PbO) belongs to the most promising photoconductors for optoelectronic and large area detectors applications, the charge transport mechanism in this material still remains unclear. Combining the conventional time-of-flight and the photo-generated charge extraction by linear increasing voltage (photo-CELIV) techniques, we investigate the transport of holes which are shown to be the faster carriers in poly-PbO. Experimentally measured temperature and electric field dependences of the hole mobility suggest a highly dispersive transport.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2013
The electronic properties of polycrystalline lead oxide consisting of a network of single-crystalline α-PbO platelets and the formation of native point defects in the α-PbO crystal lattice are studied using first-principles calculations. The results suggest that the polycrystalline nature of α-PbO causes the formation of lattice defects (i.e.
View Article and Find Full Text PDF