This work offers an ecologically friendly and facile approach for the modification of high-tonnage commercial polymers, including polypropylene (PP), high-density polyethylene (HDPE), and poly(ethylene terephthalate) (PET), and preparation of nanocomposite polymeric membranes via incorporation of modifying oligomer hydrophilic additives, such as poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), polyvinyl alcohol (PVA), and salicylic acid (SA). Structural modification is accomplished via the deformation of polymers in PEG, PPG, and water-ethanol solutions of PVA and SA when mesoporous membranes are loaded with oligomers and target additives. The content of target additives in nanocomposite membranes is controlled by tensile strain, and the level of loading can achieve 35-62 wt.
View Article and Find Full Text PDFUltra-high-pressure hydrogen-storage performance (up to 1900 bar) was investigated for mesoporous chromium terephthalate MIL-101 and its inclusion compounds containing ionic clusters [Re(4)S(4)F(12)](4-) and [SiW(11)O(39)](7-) within the porous framework. The maximum specific hydrogen uptake values (total) for MIL-101 are 12.3 (at 81) and 7.
View Article and Find Full Text PDFUsing a volumetric technique, the deuterium solubility, X, in heavy water (L), low-pressure hexagonal ice (I h), and high-pressure cubic clathrate ice (sII) is studied at deuterium pressures up to 1.8 kbar and temperatures from -40 to +5 degrees C. The triple point of the L + I(h) + sII equilibrium is located at P = 1.
View Article and Find Full Text PDF