Publications by authors named "Semen Melchenko"

In this study, we tested the quality of the information extraction algorithm proposed by our group to detect pulmonary embolism (PE) in medical cases through sentence labeling. Having shown a comparable result (F1 = 0.921) to the best machine learning method (random forest, F1 = 0.

View Article and Find Full Text PDF

Unstructured medical text labeling technologies are expected to be highly demanded since the interest in artificial intelligence and natural language processing arises in the medical domain. Our study aimed to assess the agreement between experts who judged on the fact of pulmonary embolism (PE) in neurosurgical cases retrospectively based on electronic health records and assess the utility of the machine learning approach to automate this process. We observed a moderate agreement between 3 independent raters on PE detection (Light's kappa = 0.

View Article and Find Full Text PDF

The automated detection of adverse events in medical records might be a cost-effective solution for patient safety management or pharmacovigilance. Our group proposed an information extraction algorithm (IEA) for detecting adverse events in neurosurgery using documents written in a natural rich-in-morphology language. In this paper, we challenge to optimize and evaluate its performance for the detection of any extremity muscle weakness in clinical texts.

View Article and Find Full Text PDF