Publications by authors named "Semantee Bhattacharya"

Bioorthogonal chemistry is a rapidly expanding field of research that involves the use of small molecules that can react selectively with biomolecules in living cells and organisms, without causing any harm or interference with native biochemical processes. It has made significant contributions to the field of biology and medicine by enabling selective labeling, imaging, drug targeting, and manipulation of bio-macromolecules in living systems. This approach offers numerous advantages over traditional chemistry-based methods, including high specificity, compatibility with biological systems, and minimal interference with biological processes.

View Article and Find Full Text PDF

Self-assembled hydrogels by virtue of their unique 3D network and tunability have extensively been explored for bio-medical applications like tissue engineering, delivery and release of therapeutic agents, etc. Herein, we demonstrate for the first-time nucleoside-based biocompatible hydrogels with a remarkable leishmanicidal effect against both promastigotes and amastigotes and no cytotoxic effect on the macrophage cell line. In this work, a series of biocompatible hydrogels have been synthesized by silver ion-driven self-assembly of natural nucleoside and nucleotide-like cytidine and 5'-GMP.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and the main cause of cancer death globally. The use of medicinal herbs as chemotherapeutic agents in cancer treatment is receiving attention as they possess no or minimum side effects. Isorhamnetin (IRN), a flavonoid, has been under attention for its anti-inflammatory and anti-proliferative properties in a number of cancers, including colorectal, skin, and lung cancers.

View Article and Find Full Text PDF

Guanine-rich DNA sequences have the propensity to adopt four-stranded tetrahelical G-quadruplex (G4) structures that are overrepresented in gene promoters. The structural polymorphism and physicochemical properties of these non-Watson-Crick G4 structures make them important targets for drug development. The guanine-rich nuclease hypersensitivity element III present in the upstream of P1 promoter of oncogene has the ability to form an intramolecular parallel G4 structure.

View Article and Find Full Text PDF

Heavy metals such as lead, chromium, and metalloid like arsenic dominate the pinnacle in posing a threat to life. Being environment-friendly, elucidating the mechanism by which microorganisms detoxify such elements has always been an active field of research hitherto. In the present study, we have investigated the capability of nitrogen-deprived Papiliotrema laurentii strain RY1 toward enhanced tolerance and neutralizing toxic elements.

View Article and Find Full Text PDF

Nitrogen is a key nutrient for all cell forms. Most organisms respond to nitrogen scarcity by slowing down their growth rate. On the contrary, our previous studies have shown that Papiliotrema laurentii strain RY1 has a robust growth under nitrogen starvation.

View Article and Find Full Text PDF

The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration.

View Article and Find Full Text PDF

Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies.

View Article and Find Full Text PDF

This study reports the identification of a chitin deacetylase gene in Cryptococcus laurentii strain RY1 over-expressing under nitrogen limitation by differential display. The up-regulation took place in robustly growing cells rather than in starving quiescent autophagic cells. Quantitative Real Time-PCR, enzyme activity in cell lysate and cell wall analysis corroborated the up-regulation of chitin deacetylase under nitrogen limitation.

View Article and Find Full Text PDF

Diabetic complications associated with increased oxidative stress can be suppressed by antioxidants. In the present study we investigated the antidiabetic and antioxidant effects of Kombucha (KT), a fermented black tea, in comparison to that of unfermented black tea (BT), in ALX-induced diabetic rats. ALX exposure lowered the body weight and plasma insulin by about 28.

View Article and Find Full Text PDF

Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis.

View Article and Find Full Text PDF

Sustained hyperglycemia and increased oxidative stress play major roles in the development of secondary complications in diabetes including liver injury. Dietary supplement of antioxidants is effective in preventing oxidative stress mediated tissue damage in diabetic pathophysiology. D-Saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties.

View Article and Find Full Text PDF

The present study investigated the role of D-saccharic acid 1,4-lactone (DSL) in the spleen tissue of alloxan (ALX) induced diabetic rats. Diabetes was induced in rats by injecting ALX (at a dose of 120 mg/kg body weight) intraperitoneally in sterile normal saline. Elevated levels of blood glucose, glycosylated Hb and TNFα decreased levels of plasma insulin and disturbed intra-cellular antioxidant machineries were detected in ALX exposed animals.

View Article and Find Full Text PDF

Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties.

View Article and Find Full Text PDF

Kombucha (KT), a fermented black tea (BT), is known to have many beneficial properties. In the present study, antioxidant property of KT has been investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity using murine hepatocytes. TBHP, a reactive oxygen species inducer, causes oxidative stress resulting in organ pathophysiology.

View Article and Find Full Text PDF

D-Saccharic acid 1,4-lactone (DSL) is a derivative of D-glucaric acid. It is a beta-glucuronidase inhibitor and possesses anticarcinogenic, detoxifying, and antioxidant properties. In the present study, the protective effects of DSL were investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in vitro using murine hepatocytes.

View Article and Find Full Text PDF

Kombucha, a fermented tea (KT) is claimed to possess many beneficial properties. Recent studies have suggested that KT prevents paracetamol and carbon tetrachloride-induced hepatotoxicity. We investigated the beneficial role of KT was against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in murine hepatocytes.

View Article and Find Full Text PDF