Most of the fluorescent molecules among organic [Formula: see text]-conjugated materials show blue or green emission in the solid phase but few of them emit red-shifted visible and near-infrared light in the material science. To create molecules emitting for this feature, two π-conjugated oxazol-5-one derivatives containing donor (OCH) and acceptor groups (NO) were synthesized. Their optical and charge-transport properties were investigated through experimental and theoretical methods including the single crystal X-ray crystallography, Hirshfeld Surface Analysis, photophysical studies and Density Functional Theory (DFT), respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Fabrication of detection elements with ultrahigh surface area is essential for improving the sensitivity of analyte detection. Here, we report a direct patterning technique to fabricate three-dimensional CeO nanoelectrode arrays for biosensor application over relatively large areas. The fabrication approach, which employs nanoimprint lithography and a CeO nanoparticle-based ink, enables the direct, high-throughput patterning of nanostructures and is scalable, integrable, and of low cost.
View Article and Find Full Text PDFWe report on the graphene-assisted growth, crystallization, and phase transition of zinc phthalocyanine (ZnPc) vertically oriented single crystal nanopillars. Postcrystallization thermal annealing of the nanostructures results in a molecular packing change while maintaining the vertical orientation of the single crystals orthogonal to the underlying substrate. Grazing incidence X-ray diffraction and high-resolution TEM studies characterized this phase transition from a metastable crystal phase to the more stable β-phase commonly observed in bulk crystals.
View Article and Find Full Text PDFThe combination of nanomaterials and conducting polymers attracted remarkable attention for development of new immobilization matrices for enzymes. Hereby, an efficient surface design was investigated by modifying the graphite rod electrode surfaces with one-step electrospun nylon 6,6 nanofibers or 4% (w/w) multiwalled carbon nanotubes (MWCNTs) incorporating nylon 6,6 nanofibers (nylon 6,6/4MWCNT). High-resolution transmission electron microscopy study confirmed the successful incorporation of the MWCNTs into the nanofiber matrix for nylon 6,6/4MWCNT sample.
View Article and Find Full Text PDFMaterial modification is one of the hot topics recently. Hereby a novel functional monomer, 2-(4-nitrophenyl)-4,7-di(thiophen-2-yl)-1H-benzo[d]imidazole (BIPN), was synthesized for matrix generation through electrochemical polymerization. Its conducting polymer was successfully used for the biolayer construction in the biosensor preparation.
View Article and Find Full Text PDFIn order to construct a robust covalent binding between biomolecule and immobilization platform in biosensor preparation, a novel functional monomer 4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2-yl)benzaldehyde (BIBA) was designed and successfully synthesized. After electropolymerization of this monomer, electrochemical and spectroelectrochemical properties were investigated in detail. To fabricate the desired biosensor, glucose oxidase (GOx) was immobilized as a model enzyme on the polymer coated graphite electrode with the help of glutaraldehyde (GA).
View Article and Find Full Text PDF