Recently discovered heterogeneous myeloid-derived suppressor cells (MDSCs) are some of the most discussed immunosuppressive cells in contemporary immunology, especially in the tumor microenvironment, and are defined primarily by their T cell immunosuppressive function. The importance of these cells extend to other chronic pathological conditions as well, including chronic infection, inflammation, and tissue remodeling. In many of these conditions, their accumulation/expansion correlates with disease progression, poor prognosis, and reduced survival, which highlights the potential of how these cells may be used in a clinical setting as both prognostic factor and therapeutic target.
View Article and Find Full Text PDFBackground: The transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) is implicated in diverse processes and diseases. Its two isoforms, namely liver-enriched activator protein (LAP) and liver-enriched inhibitor protein (LIP) are translated from the same mRNA. They share the same C-terminal DNA binding domain except LAP has an extra N-terminal activation domain.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective curative therapy. Recent evidence shows increased circulating myeloid-derived suppressor cells (MDSCs) in cancer, inflammation, and fibrosis, with some of these cells expressing B7H3. We sought to investigate the role of MDSCs in IPF and its potential mediation B7H3.
View Article and Find Full Text PDFThe clinical significance of B7H3 (CD276) and its cleavage product soluble B7H3 (sB7H3) in idiopathic pulmonary fibrosis (IPF) is unknown. Mounting evidence suggests the potential utility of peripheral blood myeloid cell enumeration to predict disease outcome and indicate active lung disease. Here we hypothesized that sB7H3 is involved in regulation of circulating myeloid cells in pulmonary fibrosis.
View Article and Find Full Text PDFMany aging related diseases such as cancer implicate the myofibroblast in disease progression. Furthermore genesis of the myofibroblast is associated with manifestation of cellular senescence of unclear significance. In this study we investigated the role of a common regulator, namely telomerase reverse transcriptase (TERT), in order to evaluate the potential significance of this association between both processes.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
November 2021
The Wnt/β-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/β-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear.
View Article and Find Full Text PDFTargeting activated fibroblasts, including myofibroblast differentiation, has emerged as a key therapeutic strategy in patients with idiopathic pulmonary fibrosis (IPF). However, there is no available therapy capable of selectively eradicating myofibroblasts or limiting their genesis. Through an integrative analysis of the regulator genes that are responsible for the activation of IPF fibroblasts, we noticed the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding protein, myristoylated alanine-rich C-kinase substrate (MARCKS), as a potential target molecule for IPF.
View Article and Find Full Text PDFAm J Respir Crit Care Med
October 2019
The impact of lung insult on the bone marrow (BM) and subsequent disease is unknown. To study alterations in the BM in response to lung injury/fibrosis and examine their impact on subsequent lung insult. BM cells from control or bleomycin-treated donor mice were transplanted into naive mice, which were subsequently evaluated for bleomycin-induced pulmonary fibrosis.
View Article and Find Full Text PDFMutations in the genes encoding telomerase reverse transcriptase (TERT) and telomerase's RNA components as well as shortened telomeres are risk factors for idiopathic pulmonary fibrosis, where repetitive injury to the alveolar epithelium is considered a key factor in pathogenesis. Given the importance of TERT in stem cells, we hypothesized that TERT plays an important role in epithelial repair and that its deficiency results in exacerbation of fibrosis by impairing this repair/regenerative process. To evaluate the role of TERT in epithelial cells, we generated type II alveolar epithelial cell (AECII)-specific TERT conditional knockout (SPC- cKO) mice by crossing floxed mice with inducible SPC-driven Cre mice.
View Article and Find Full Text PDFRecent evidence supports that bone marrow (BM)-derived hematopoietic progenitor cells play an important role in lung injury and fibrosis. While these cells give rise to multiple cell types, the ST2 (Il1rl1)-expressing group 2 innate lymphoid cells (ILC2s) derived from BM progenitors have been implicated in tissue repair and remodeling, including in lung fibrosis. To further investigate the precise role of BM-derived ILC2s in the pathogenesis of fibrotic lung disease, their importance in the bleomycin-induced lung fibrosis model was evaluated by analyzing the effects of selective ST2 deficiency in the BM compartment.
View Article and Find Full Text PDFInterstitial lung disease (ILD) comprises a large number of chronic lung disease characterized by varying degrees of inflammation and fibrosis. Mostly they are idiopathic including idiopathic pulmonary fibrosis (IPF), which is a specific disorder characterized by progressive fibrosis leading commonly to end-stage lung disease, respiratory failure, and fatal outcome. IPF and many of these fibrotic ILDs lack effective therapy despite recent approval of two drugs to slow progression in certain IPF patients.
View Article and Find Full Text PDFAmphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation.
View Article and Find Full Text PDFThe Notch pathway represents a highly conserved signaling network with essential roles in regulation of key cellular processes and functions, many of which are critical for development. Accumulating evidence indicates that it is also essential for fibrosis and thus the pathogenesis of chronic fibroproliferative diseases in diverse organs and tissues. Different effects of Notch activation are observed depending on cellular and tissue context as well as in both physiologic and pathologic states.
View Article and Find Full Text PDFTelomerase is typically expressed in cellular populations capable of extended replication, such as germ cells, tumor cells, and stem cells, but is also induced in tissue injury, repair and fibrosis. Its catalytic component, telomerase reverse transcriptase (TERT) is induced in lung fibroblasts from patients with fibrotic interstitial lung disease and in rodents with bleomycin-induced pulmonary fibrosis. To evaluate the fibroblast specific role of TERT in pulmonary fibrosis, transgenic mice bearing a floxed TERT allele were generated, and then crossed with an inducible collagen α2(I)-Cre mouse line to generate fibroblast specific TERT conditional knockout mice.
View Article and Find Full Text PDFNotch signaling pathway is involved in the regulation of cell fate, differentiation, proliferation, and apoptosis in development and disease. Previous studies suggest the importance of Notch1 in myofibroblast differentiation in lung alveogenesis and fibrosis. However, direct in vivo evidence of Notch1-mediated myofibroblast differentiation is lacking.
View Article and Find Full Text PDFSubcutaneous lipoatrophy characteristically accompanies dermal fibrosis with de novo emergence of myofibroblasts such as in systemic sclerosis or scleroderma. Recently dermal adipocytes were shown to have the capacity to differentiate to myofibroblasts in an animal model. Transforming growth factor β can induce this phenomenon in vitro; however its in vivo significance is unclear.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
April 2015
Hedgehog signaling plays important roles in cell development and differentiation. In this study, the ability of Sonic Hedgehog (SHH) to induce myofibroblast differentiation was analyzed in isolated human lung fibroblasts, and its in vivo significance was evaluated in rodent bleomycin-induced pulmonary fibrosis. The results showed that SHH could induce myofibroblast differentiation in human lung fibroblasts in a Smo- and Gli1-dependent manner.
View Article and Find Full Text PDFFIZZ (found in inflammatory zone) 1, a member of a cysteine-rich secreted protein family, is highly induced in lung allergic inflammation and bleomycin induced lung fibrosis, and primarily expressed by airway and type II alveolar epithelial cells. This novel mediator is known to stimulate α-smooth muscle actin and collagen expression in lung fibroblasts. The objective of this study was to investigate the in vivo effects of FIZZ1 on the development of lung fibrosis by evaluating bleomycin-induced pulmonary fibrosis in FIZZ1 deficient mice.
View Article and Find Full Text PDFAm J Respir Crit Care Med
October 2013
Rationale: Bone marrow (BM)-derived cells have been implicated in pulmonary fibrosis. However, their precise role in pathogenesis is incompletely understood.
Objectives: To elucidate roles of BM-derived cells in bleomycin-induced pulmonary fibrosis, and clarify their potential relationship to lung hematopoietic progenitor cells (LHPCs).
In addition to its expression in stem cells and many cancers, telomerase activity is transiently induced in murine bleomycin (BLM)-induced pulmonary fibrosis with increased levels of telomerase transcriptase (TERT) expression, which is essential for fibrosis. To extend these observations to human chronic fibrotic lung disease, we investigated the expression of telomerase activity in lung fibroblasts from patients with interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF). The results showed that telomerase activity was induced in more than 66% of IPF lung fibroblast samples, in comparison with less than 29% from control samples, some of which were obtained from lung cancer resections.
View Article and Find Full Text PDFStem cell factor (SCF) and its receptor c-Kit have been implicated in tissue remodelling and fibrosis. Alveolar fibroblasts from patients with diffuse interstitial fibrosis secrete more SCF. However, its precise role remains unclear.
View Article and Find Full Text PDFPoly(ADP-ribosyl)ation (PARylation) is a post-translational protein modification effected by enzymes belonging to the poly(ADP-ribose) polymerase (PARP) superfamily, mainly by PARP-1. The key acceptors of poly(ADP-ribose) include PARP-1 itself, histones, DNA repair proteins, and transcription factors. Because many of these factors are involved in the regulation of myofibroblast differentiation, we examined the role of PARylation on myofibroblast differentiation.
View Article and Find Full Text PDFPurpose Of Review: Interest in the myofibroblast as a key player in propagation of chronic progressive fibrosis continues to elicit many publications, with focus on its cellular origins and the mechanisms underpinning their differentiation and/or transition. The objective of the review is to highlight this recent progress.
Recent Findings: The epithelial origin of the myofibroblast in fibrosis has been challenged by recent studies, with the pericyte suggested as a possible precursor instead.
Tissue injury incites a repair response with a key mesenchymal component that provides the essential connective tissue for subsequent regeneration or pathological fibrosis. The fibroblast is the major mesenchymal cell type to be implicated in this connective tissue response, and it is in its activated or differentiated form that it participates in the repair process. The myofibroblast represents such an activated mesenchymal cell and is a key source of extracellular matrix and inflammatory/fibrogenic cytokines as well as participating in wound contraction.
View Article and Find Full Text PDFThe CCAAT/enhancer-binding protein β (C/EBPβ) regulates a variety of factors and cellular responses associated with pulmonary fibrosis. To distinguish its role in the mesenchyme from that in other compartments, the effects of mesenchymal-specific deletion of C/EBPβ on pulmonary fibrosis was examined. Crossing of mice with the floxed C/EBPβ gene with α2(I) collagen enhancer-CreER(T)-bearing mice successfully generated progeny with a conditional knockout (CKO) of C/EBPβ in collagen I-expressing ("mesenchymal") cells only on treatment with tamoxifen (C/EBPβ CKO).
View Article and Find Full Text PDF