Single-copy rrn strains facilitate genetic ribosomal studies in Escherichia coli. Consecutive markerless deletion of rrn operons resulted in slower growth upon inactivation of the fourth copy, which was reversed by supplying transfer RNA genes encoded in rrn operons in trans. Removal of the sixth, penultimate rrn copy led to a reduced growth rate due to limited rrn gene dosage.
View Article and Find Full Text PDFDiversification of cell size is hypothesized to have occurred through a process of evolutionary optimization, but direct demonstrations of causal relationships between cell geometry and fitness are lacking. Here, we identify a mutation from a laboratory-evolved bacterium that dramatically increases cell size through cytoskeletal perturbation and confers a large fitness advantage. We engineer a library of cytoskeletal mutants of different sizes and show that fitness scales linearly with respect to cell size over a wide physiological range.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2013
Many antibiotics inhibit the growth of sensitive bacteria by interfering with ribosome function. However, discovery of new protein synthesis inhibitors is curbed by the lack of facile techniques capable of readily identifying antibiotic target sites and modes of action. Furthermore, the frequent rediscovery of known antibiotic scaffolds, especially in natural product extracts, is time-consuming and expensive and diverts resources that could be used toward the isolation of novel lead molecules.
View Article and Find Full Text PDFAdaptation to novel environments is often associated with changes in gene regulation. Nevertheless, few studies have been able both to identify the genetic basis of changes in regulation and to demonstrate why these changes are beneficial. To this end, we have focused on understanding both how and why the lactose utilization network has evolved in replicate populations of Escherichia coli.
View Article and Find Full Text PDFSuppressive drug interactions, in which one antibiotic can actually help bacterial cells to grow faster in the presence of another, occur between protein and DNA synthesis inhibitors. Here, we show that this suppression results from nonoptimal regulation of ribosomal genes in the presence of DNA stress. Using GFP-tagged transcription reporters in Escherichia coli, we find that ribosomal genes are not directly regulated by DNA stress, leading to an imbalance between cellular DNA and protein content.
View Article and Find Full Text PDFIn Escherichia coli the genome must be compacted approximately 1,000-fold to be contained in a cellular structure termed the nucleoid. It is proposed that the structure of the nucleoid is determined by a balance of multiple compaction forces and one major expansion force. The latter is mediated by transertion, a coupling of transcription, translation, and translocation of nascent membrane proteins and/or exported proteins.
View Article and Find Full Text PDFTranscription antitermination in the ribosomal operons of Escherichia coli results in the modification of RNA polymerase by specific proteins, altering its basic properties. For such alterations to occur, signal sequences in rrn operons are required as well as individual interacting proteins. In this study we tested putative rrn transcription antitermination-inducing sequences from five different bacteria for their abilities to function in E.
View Article and Find Full Text PDFSynthesis of ribosomes in Escherichia coli requires an antitermination system that modifies RNA polymerase to achieve efficient transcription of the genes specifying 16S, 23S, and 5S rRNA. This modification requires nucleotide signals in the RNA and specific transcription factors, such as NusA and NusB. Transcription of rrn operons in strains lacking the ability to produce either NusA or NusB was examined by electron microscopy.
View Article and Find Full Text PDFA library of Mycobacterium tuberculosis insertional mutants was generated with the transposon Tn5370. The junction sequence between the transposon and the mycobacterial chromosome was determined, revealing the positions of 1329 unique insertions, 1189 of which were located in 351 different ORFs. Transposition was not completely random and examination of the most susceptible genome regions revealed a lower-than-average G+C content ranging from 54 to 62 mol%.
View Article and Find Full Text PDFMicrobiology (Reading)
December 2000
The genome sequences of two virulent strains of Mycobacterium tuberculosis (H37Rv and CDC 1551) are now available. CDC 1551 is a recent clinical isolate and H37Rv is a commonly used lab strain which has been subject to in vitro passage. The two strains have been shown to display differing phenotypes both in vivo and in vitro.
View Article and Find Full Text PDF