Saccharum spontaneum, a wild relative of sugarcane, is highly tolerant to drought and salinity. The exploitation of germplasm resources for salinity tolerance is a major thrust area in India. In this study, we utilized suppression subtractive hybridization (SSH) followed by sequencing for the identification of upregulated transcripts during salinity stress in S.
View Article and Find Full Text PDFUnlabelled: Drought is a major factor which reduces cane growth and productivity. In the present study, we sequenced drought susceptible (V1) and drought tolerant (V2) sugarcane varieties using high-throughput miRNA deep sequencing method to study the regulation of gene expression by miRNAs during drought stress in sugarcane. A total of 1224 conserved miRNAs which belong to 89 miRNA families were identified and 38% of the differentially regulated miRNAs were common for both varieties.
View Article and Find Full Text PDFSugarcane ( spp.) is one of the most economically significant crops because of its high sucrose content and it is a promising biomass feedstock for biofuel production. Sugarcane genome sequencing and analysis is a difficult task due to its heterozygosity and polyploidy.
View Article and Find Full Text PDFSugarcane (Saccharum spp.) is one of the highest biomass-producing plant and the best lignocellulosic feedstock for ethanol production. To achieve more efficient conversion of biomass to ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed.
View Article and Find Full Text PDFGenomic microsatellite markers are capable of revealing high degree of polymorphism. Sugarcane (Saccharum sp.), having a complex polyploid genome requires more number of such informative markers for various applications in genetics and breeding.
View Article and Find Full Text PDFThe genome of modern sugarcane cultivars is highly polyploid (approximately 12x), aneuploid, of interspecific origin, and contains 10 Gb of DNA. Its size and complexity represent a major challenge for the isolation of agronomically important genes. Here we report on the first attempt to isolate a gene from sugarcane by map-based cloning, targeting a durable major rust resistance gene (Bru1).
View Article and Find Full Text PDFThe basidiomycete Ustilago scitaminea Sydow, which causes sugarcane smut disease, has been spreading throughout Africa and America since the 1940s. The genetic diversity and structure of different populations of this fungus worldwide was investigated using microsatellites. A total of 142 single-teliospore were isolated from 77 distinct whips (sori) collected in 15 countries worldwide.
View Article and Find Full Text PDF