Nano-differential scanning calorimetry (nano-DSC) is a powerful tool in the investigation of unilamellar (small unilamellar, SUVs, or large unilamellar, LUVs) vesicles, as well as lipids on supported bilayers, since it measures the main gel-to-liquid phase transition temperature (Tm), enthalpies and entropies. In order to assign these transitions in single component systems, where Tm often occurred as a doublet, nano-DSC, dynamic light scattering and cryo-transmission electron microscopy (cryo-TEM) data were compared. The two Tms were not attributable to decoupled phase transitions between the two leaflets of the bilayer, i.
View Article and Find Full Text PDFLipid exchange/transfer has been compared for zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (DMPC) small unilamellar vesicles (SUVs) and for the same lipids on silica (SiO2) nanoparticle supported lipid bilayers (NP-SLBs) as a function of ionic strength, temperature, temperature cycling, and NP size, above the main gel-to-liquid crystal phase transition temperature, Tm, using d- and h-DMPC and DPPC. Increasing ionic strength decreases the exchange kinetics for the SUVs, but more so for the NP-SLBs, due to better packing of the lipids and increased attraction between the lipid and support. When the NP-SLBs (or SUVs) are cycled above and below Tm, the exchange rate increases compared with exchange at the same temperature without cycling, for similar total times, suggesting that defects provide sites for more facile removal and thus exchange of lipids.
View Article and Find Full Text PDFHigh-surface-area nanoparticles often cluster, with unknown effects on their cellular uptake and environmental impact. In the presence of vesicles or cell membranes, lipid adsorption can occur on the nanoparticles, resulting in the formation of supported lipid bilayers (SLBs), which tend to resist cellular uptake. When the amount of lipid available is in excess compared with that required to form a single-SLB, large aggregates of SLBs enclosed by a close-fitting lipid bilayer sheath are shown to form.
View Article and Find Full Text PDFThe packing of lipids on silica (SiO(2)) nanoparticles (NPs) was investigated by Raman spectroscopy for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) as a function of their size, for SiO(2) NPs of 5, 15, 25, 45, and 100 nm nominal diameter. Raman spectral indicators in the C-C and C-H stretching regions were used to determine conformational order and alkyl chain packing for these systems. As the ratio of NP to lipid size decreases, packing in a normal bilayer configuration increases free volume and decreases hydrophobic interaction between the chains.
View Article and Find Full Text PDFStabilization against fusion of zwitterionic lipid small unilamellar vesicles (SUVs) by charged nanoparticles is essential to prevent premature inactivation and cargo unloading. In the present work, we examined the stabilization of DMPC and DPPC SUVs by monolithic silica (SiO(2)) nanoparticle envelopment, for SiO(2) with 4-6, 10-20, 20-30, and 40-50 nm nominal diameter. We found that for these soft colloids stabilization is critically dependent on whether fusion occurs between the charged nanoparticles and neutral SUVs to form supported lipid bilayers (SLBs), or whether the reverse occurs, namely, nanoparticle decoration of the SUVs.
View Article and Find Full Text PDFSupported lipid bilayers (SLBs) of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were formed on 20-100 nm silica (SiO(2)) nanobeads, and the formation was accompanied by an 8 nm increase in diameter of the SiO(2), consistent with single nanobeads surrounded by a DMPC bilayer. Complete SLBs were formed when the nominal surface areas of the DMPC matched that of the silica, SA(DMPC)/SA(SiO2) = 1, and required increasing ionic strength and time to form on smaller size nanobeads, as shown by a combination of nano-differential scanning calorimetry (nano-DSC), dynamic light scattering (DLS), and zeta potential (zeta) measurements. For 5 nm SiO(2), where the nanoparticle and DMPC dimensions were comparable, DMPC fused and formed SLBs on the nanobeads, but it did not form single bilayers around them.
View Article and Find Full Text PDFInvestigation of the physical properties of highly curved membranes is important in biology, for example, in fusion intermediates, and in pharmaceutical or chromatographic applications, where nanoscale features may affect substrate binding. However, vesicle fusion below 40 nm precludes study of this size regime. In this investigation, the effect of high surface curvature on the adsorption and morphology of phosphotidylcholine lipids with alkyl chain lengths of 14 (DMPC), 16 (DPPC), and 18 (DSPC) onto silica (SiO2) nanobeads was investigated by thermogravimetric analysis (TGA), high sensitivity nanocalorimetry, and vibrational spectroscopy.
View Article and Find Full Text PDF