Publications by authors named "Selvasembian Rangabhashiyam"

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

The rising environmental concerns and the growing demand for renewable materials have surged across various industries. In this context, lignin, being a plentiful natural aromatic compound that possesses advantageous functional groups suitable for utilization in biocomposite systems, has gained notable attention as a promising and sustainable alternative to fossil-derived materials. It can be obtained from lignocellulosic biomass through extraction via various techniques, which may cause variability in its thermal, mechanical, and physical properties.

View Article and Find Full Text PDF

The present study reports the green synthesis of cellulose nanocrystals from the shells of (SFS) cellulose. Three different methods, alkali, acid and organic acid, were screened for the maximum cellulose extraction. A maximum cellulose yield, 30.

View Article and Find Full Text PDF

Scenedesmus strains have been reported to have the potential to tolerate and bioremediate antibiotic pollutants through bioadsorption, bioaccumulation, and biodegradation mechanism from the wastewater medium. Hormesis effects have been observed in the Scenedesmus strains when exposed to different concentrations of antibiotic pollutants. Lower concentrations of antibiotic pollutants are known to trigger growth-stimulating effects by triggering adaptive responses such as increased metabolic activity and activating detoxifying mechanisms leading to the biotransformation pathway.

View Article and Find Full Text PDF
Article Synopsis
  • * The review discusses two methods for creating NH-functionalized MOFs (pre-synthetic and post-synthetic), while also identifying challenges such as high charge carrier recombination and low optical absorption that limit their effectiveness.
  • * Strategies to improve the photocatalytic performance of NH-functionalized MOFs through the creation of heterojunctions are detailed, focusing on enhancing charge separation and reducing the degradation of organic pollutants.
View Article and Find Full Text PDF

Extraction of coal through opencast mining leads to the buildup of heaps of overburden (OB) material, which poses a significant risk to production safety and environmental stability. A systematic bibliometric analysis to identify research trends and gaps, and evaluate the impact of studies and authors in the field related to coal OB phytostabilization was conducted. Key issues associated with coal extraction include land degradation, surface and groundwater contamination, slope instability, erosion and biodiversity loss.

View Article and Find Full Text PDF

Food waste is a lucrative source of complex nutrients, which can be transformed into a multitude of bioproducts by the aid of microbial cell factories. The current study emphasizes isolating Glucoamylase enzyme (GA) producing strains that can effectively break down mixed food waste (MW), which serves as a substrate for biomanufacturing. The screening procedure relied heavily on the growth of isolated fungi on starch agar media, to specifically identify the microbes with the highest starch hydrolysis potential.

View Article and Find Full Text PDF

Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention.

View Article and Find Full Text PDF

The survival of humanity is severely threatened by the massive accumulation of waste in the ecosystem. One plausible solution for the management and upcycling of waste is conversing waste at the molecular level and deriving carbon-based nanomaterial. The field of carbon nanomaterials with distinctive properties, such as exceptionally large surface areas, good thermal and chemical stability, and improved propagation of charge carriers, remains a significant area of research.

View Article and Find Full Text PDF

The COVID-19 pandemic has caused unprecedented global health and economic crises. The emergence of long COVID-19 has raised concerns about the interplay between SARS-CoV-2 infections, climate change, and the environment. In this context, a concise analysis of the potential long-term effects of the COVID-19 epidemic along with the awareness aboutenvironmental issues are realized.

View Article and Find Full Text PDF

The potential of pyrolyzed Mytella falcata shells as an adsorbent for removing methylene blue dye molecules from aqueous solutions was investigated. The study found that the adsorbent produced at 600 °C of pyrolysis temperature, with an adsorbent mass of 0.5 g, particle diameter of 0.

View Article and Find Full Text PDF

The unscientific disposal of the most abundant crustacean wastes, especially those derived from marine sources, affects both the economy and the environment. Strategic waste collection and management is the need of the hour. Sustainable valorization approaches have played a crucial role in solving those issues as well as generating wealth from waste.

View Article and Find Full Text PDF

This research aims to convert pomegranate peel (PP) into microporous activated carbon (PPAC) using a microwave assisted KCO activation method. The optimum activation conditions were carried out with a 1:2 PP/KCO impregnation ratio, radiation power 800 W, and 15 min irradiation time. The statistical Box-Behnken design (BBD) was employed as an effective tool for optimizing the factors that influence the adsorption performance and removal of methylene blue (MB) dye.

View Article and Find Full Text PDF

Over the past several decades, the increase in industrialization provoked the discharge of harmful pollutants into the environment, affecting human beings and ecosystems. ZnO-based photocatalysts seem to be the most promising photocatalysts for treating harmful pollutants. However, fast charge carrier recombination, photo corrosion, and long reaction time are the significant factors that reduce the photoactivity of ZnO-based photocatalysts.

View Article and Find Full Text PDF

Hexavalent chromium (Cr(VI)) is deemed a priority contaminant owing to its carcinogenicity, teratogenicity, and mutagenicity towards flora and fauna. A novel Chitosan-modified Mimosa pigra biochar (CMPBC) was fabricated and the efficiency of Cr(VI) oxyanion removal in aqueous systems was compared with the pristine biochar. The instrumental characterization of X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) confirmed the amino modification of MPBC when treated with chitosan.

View Article and Find Full Text PDF

Biodiesel is an alternative to fossil-derived diesel with similar properties and several environmental benefits. Biodiesel production using conventional catalysts such as homogeneous, heterogeneous, or enzymatic catalysts faces a problem regarding catalysts deactivation after repeated reaction cycles. Heterogeneous nanocatalysts and nanobiocatalysts (enzymes) have shown better advantages due to higher activity, recyclability, larger surface area, and improved active sites.

View Article and Find Full Text PDF
Article Synopsis
  • Green chemistry is emerging as an effective solution for environmental issues, with cellulose recognized as a crucial biomaterial due to its beneficial properties such as biodegradability and cost-effectiveness.* -
  • Combining cellulose with nanocomposite materials improves their characteristics, leading to better performance in applications like antibiotic treatment and dye degradation, by enhancing the photocatalytic activity.* -
  • The review evaluates cellulose’s role as a support material in photocatalysis, discussing its ability to improve charge migration and reduce recombination rates, while also addressing current advancements and challenges in the field.*
View Article and Find Full Text PDF

Microalgae are a promising source of raw material (i.e., proteins, carbohydrates, lipids, pigments, and micronutrients) for various value-added products and act as a carbon sink for atmospheric CO.

View Article and Find Full Text PDF

The accelerated use, massive disposal, and contamination with face masks during the COVID-19 pandemic have raised new questions regarding their negative impact on the environment emerged. One major concern is whether microplastics (MPs) derived from face masks (FMPs) represent an important ecotoxicological hazard. Here, we discussed the shortcomings, loose ends, and considerations of the current literature investigating the ecotoxicological effects of FMPs on aquatic and terrestrial organisms.

View Article and Find Full Text PDF

Activated carbon (AC) is a porous carbon-rich material that is widely used to remove pollutants, such as synthetic dyes, from contaminated water. Although quite efficient, the use of this technology is limited to the ability of the AC to be regenerated and/or reused. Conventional regeneration procedures are inefficient, requiring the development and/or implementation of new approaches.

View Article and Find Full Text PDF

Within the frame of this article, briefly but comprehensively, we present the existing knowledge, perspectives, and challenges for the utilization of Layered Double Hydroxides (LDHs) as adsorbents against a plethora of pollutants in aquatic matrixes. The use of LDHs as adsorbents was established by considering their significant physicochemical features, including their textural, structural, morphological, and chemical composition, as well as their method of synthesis, followed by their advantages and disadvantages as remediation media. The utilization of LDHs towards the adsorptive removal of dyes, metals, oxyanions, and emerging pollutants is critically reviewed, while all the reported kinds of interactions that gather the removal are collectively presented.

View Article and Find Full Text PDF

In this study the multiple metal(loid) (As, Cd, Cu and Ni) resistant bacterium Serratia sp. KUJM3 was able to grow in both single and multiple metal(loid) contaminated wastewater and removed them by 34.93-48.

View Article and Find Full Text PDF

The growing needs of the rising population and blatant misuse of resources have contributed enormously to environmental problems. Among the various methods, photocatalysis has emerged as one of the effective remediation methods. The continuous search for effective photocatalysts that can be made from abundant, cheap, non-toxic materials is going on.

View Article and Find Full Text PDF

Aqueous contaminants such as pharmaceuticals, dyes, personal care products, etc., are the common water contaminants that show adverse health effects. Photocatalysis is one of the well-known techniques to treat these water contaminants.

View Article and Find Full Text PDF
Article Synopsis
  • Urbanization and industrial activities are increasing the levels of persistent organic pollutants (POPs) in water, which harm the ecosystem and pose risks to human health.
  • Developing effective methods to eliminate POPs is crucial, with adsorption using nanomaterials showing high efficiency in removing these contaminants.
  • Nano-adsorbents can achieve over 70% removal of POPs and can be reused multiple times, although concerns exist about their ecological toxicity and safe disposal.
View Article and Find Full Text PDF