Polarization rotation and wavelength filtering are key functionalities used to build complex photonic integrated circuits. Both these functionalities have been demonstrated in various material and device platforms. We propose, for the first time, a fully passive wavelength selective polarization rotation in silicon nitride/amorphous silicon hybrid waveguide.
View Article and Find Full Text PDFWe demonstrate the linear and nonlinear characterization of a plasma-enhanced chemical vapor deposited silicon-rich silicon nitride (SRSN) racetrack ring resonator for on-chip applications within the telecommunication wavelength range. The SRSN waveguide parameters are optimized by employing the refractive index profile measured by ellipsometry to achieve flat dispersion in the telecom band. Furthermore, we measure the thermo-optic coefficient of the micro-resonator by analyzing the temperature-dependent transmission spectra and assess it to be 3.
View Article and Find Full Text PDFIn this work, we report the realization of a polarization-insensitive grating coupler, single-mode waveguide, and ring resonator in the GaN-on-sapphire platform. We provide a detailed demonstration of the material characterization, device simulation, and experimental results. We achieve a grating coupler efficiency of -5.
View Article and Find Full Text PDFWe demonstrate a miniaturized wafer-scale optical gas sensor that combines the gas cell, an optical filter, and integrated flow channels. We present the design, fabrication and characterization of an integrated cavity-enhanced sensor. Using the module, we demonstrate absorption sensing of ethylene down to 100 ppm level.
View Article and Find Full Text PDFWe demonstrate a detailed theoretical analysis describing the generation of an electro-optic comb (EOC) in the near-IR range through discrete phase and amplitude modulation driven by radio frequency (RF) signal generators. Furthermore, the generated EOC spectra suffer nonlinear spectral broadening while propagating through a hybrid Si-rich nitride (SRN) waveguide structure integrated with two-dimensional (2D) layered graphene oxide (GO) films. We perform a detailed analysis to investigate the influence of GO layers, pump wavelength detuning, and other waveguide parameters on the evolution of comb spectra propagating through the hybrid waveguide structure.
View Article and Find Full Text PDFWe demonstrate an on-chip in-plane polarization independent multi-spectral color filter in the visible to near-infrared wavelength band. We experimentally show a four-channel transmission and in-plane spectral filter characteristics spanning a 400-nm spectral range. Engineered 2D guided mode resonance structures in a silicon nitride-on-sapphire substrate are used to realize the filters.
View Article and Find Full Text PDFThe interaction of light with collective charge oscillations, called plasmon-polariton, and with polar lattice vibrations, called phonon-polariton, are essential for confining light at deep subwavelength dimensions and achieving strong resonances. Traditionally, doped-semiconductors and conducting metal oxides (CMO) are used to achieve plasmon-polaritons in the near-to-mid infrared (IR), while polar dielectrics are utilized for realizing phonon-polaritons in the long-wavelength IR (LWIR) spectral regions. However, demonstrating low-loss plasmon- and phonon-polaritons in one host material will make it attractive for practical applications.
View Article and Find Full Text PDFWe present silicon nitride grating enabled fiber-chip coupling in the sub-near-infrared band. We present a comprehensive design and simulation and experimental demonstration of uniform and apodized grating couplers, with and without bottom reflectors. The mode engineering yields a best efficiency of -1.
View Article and Find Full Text PDFWe present an on-chip photodetector integrated wavelength filter on a SiN-on-silicon-on-insulator (SOI) platform in the 850 nm wavelength window. The wavelength filter is designed using an echelle grating with a distributed Bragg reflector as the grating reflectors. We present the design and experimental realization of a six-channel wavelength filter with a channel spacing of 10 nm.
View Article and Find Full Text PDFPolymer photonic circuits offer a versatile platform for various applications, including communication, sensing and optical signal processing. Though polymers offer broadband, linear and nonlinear optical properties, the coupling between an optical fibre and a polymer waveguide has been a challenge. In this work, we propose and demonstrate a wafer-scale vertical coupling scheme for polymer waveguides.
View Article and Find Full Text PDFWe present a compact, highly sensitive and scalable on-chip photonic vibration measurement scheme for vibration sensing. The scheme uses a silicon photonic diffraction-grating based sensor integrated underneath a silicon cantilever. We demonstrate a static and dynamic measurement sensitivity (ΔT/Δgap) of 0.
View Article and Find Full Text PDFWe demonstrate a technique to continuously tune center frequency and repetition rate of optical frequency combs generated in silicon microring modulators and bandwidth scale them. We utilize a drive frequency dependent, microwave power induced shifting of the microring modulator resonance. In this work, we demonstrate center frequency tunability of frequency combs generated in silicon microring modulators over a wide range (∼8nm) with fixed number of lines.
View Article and Find Full Text PDFWe utilize adaptive optimization to enhance the spectral broadening of an amplified electro-optic frequency comb with a 25 GHz repetition rate in a highly nonlinear fiber and subsequently generate sub-picosecond pulses. The spectral phase of the comb is adaptively optimized by a Fourier pulse shaper in a closed control loop with the HNLF output spectrum as the process variable to be optimized. Enhanced spectral broadening also increases the stimulated Brillouin scattering threshold allowing increased power scaling and thereby boosting the bandwidth by a factor of more than 13 times over the initial comb.
View Article and Find Full Text PDFWe present a continuously tunable silicon photonics assisted radio frequency (RF) phase shifter using a coupled microring resonator. Using the coupled cavity, we demonstrate a sub-1 dB power penalty for a RF bandwidth of 34.5 GHz (9-43.
View Article and Find Full Text PDFWe demonstrate a versatile technique to generate a broadband optical frequency comb source in the C-band. This is accomplished by nonlinear spectral broadening of a phase modulated comb source driven by dual frequency offset locked carriers. The locking is achieved by setting up a heterodyne optical frequency locked loop to lock two phase modulated electro-optic 25 GHz frequency combs sourced from individual seed carriers offset by 100 GHz, to within 6.
View Article and Find Full Text PDFAll-optical tuning of the resonance of an optical cavity is used to realise optical signal-processing including modulation, switching, and signal-routing. The tuning of optical resonance is dictated by the two primary effects induced by optical absorption: charge-carrier-generation and heat-generation. Since these two effects shift the resonance in opposite directions in a pure silicon-on-insulator (SOI) micro-ring resonator as well as in a graphene-on-SOI system, the efficiency and the dynamic range of all-optical resonance-tuning is limited.
View Article and Find Full Text PDFSilicon Nitride (SiN) is emerging as a promising material for a variety of integrated photonic applications. Given its low index contrast however, a key challenge remains to design efficient couplers for the numerous platforms in SiN photonics portfolio. Using a combination of bottom reflector and a chirp generating algorithm, we propose and demonstrate high efficiency, grating couplers on two distinct SiN platforms.
View Article and Find Full Text PDFWe experimentally demonstrate a broadband, fabrication-tolerant compact silicon waveguide taper (34.2 μm) in a silicon-on-insulator wire waveguide. The taper works on multimode interference along the length of the taper.
View Article and Find Full Text PDFWe propose and demonstrate a tunable broadband optical single sideband generation using self-coupled silicon micro-ring resonator. We exploit self-coupling in a ring cavity to generate tunable resonance splitting. Using the proposed device, single sideband with carrier signal is generated from a double sideband signal.
View Article and Find Full Text PDFWe present a waveguide integrated high-speed Si photodetector integrated with a silicon nitride (SiN) waveguide on an silicon-on-insulator (SOI) platform for short reach data communication in a 850 nm wavelength band. We demonstrate a waveguide couple Si pin photodetector responsivity of 0.44 A/W at 25 V bias.
View Article and Find Full Text PDFWe demonstrate on-waveguide thermo-optic tuners based on solution-processed metallic carbon nanotubes (CNTs) on silicon-on-insulator (SOI) and silicon nitride (SiN) microring resonators operating around 1550 nm. On SOI microring resonators using planarized wire waveguides, a thermo-optic power efficiency of 29 mW/FSR and a thermal transient of 1.3 μs are achieved.
View Article and Find Full Text PDFWe demonstrate an ultra-compact waveguide taper on a silicon nitride platform. The proposed taper provides a coupling efficiency of 95% at a length of 19.5 μm in comparison to the standard linear taper of length 50 μm, which connects a 10 μm wide waveguide to a 1 μm wide photonic wire.
View Article and Find Full Text PDFWe report a method for compensation of errors caused by temperature fluctuations in refractive index measurements using Silicon photonic microring sensors. The method involves determination of resonance wavelength shifts caused by thermal fluctuations using real-time measurement of on-chip temperature variations and thermo-optic coefficient (TOC) of analyte liquids. Resistive metal lines patterned around Silicon microrings are used to track temperature variations and TOC of analyte is calculated by measuring wavelength shifts caused by controlled increments in device temperature.
View Article and Find Full Text PDFWe experimentally demonstrate tunable, highly-stable frequency combs with high repetition-rates using a single, charge injection based silicon PN modulator. In this work, we demonstrate combs in the C-band with over eight lines in a 20-dB bandwidth. We demonstrate continuous tuning of the center frequency in the C-band and tuning of the repetition-rate from 7.
View Article and Find Full Text PDFWe present a scheme for on-chip optical transduction of strain and displacement of graphene-based nano-electro-mechanical systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: the Mach-Zehnder interferometer (MZI), the micro-ring resonator, and the ring-loaded MZI. An index sensing based technique using an MZI loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28 fm/Hz and 6.
View Article and Find Full Text PDF