Publications by authors named "Selvaraj Rengaraj"

The applications of nanotechnology in the field of water treatment are rapidly expanding and have harvested significant attention from researchers, governments, and industries across the globe. This great interest stems from the numerous benefits, properties, and capabilities that nanotechnology offers in addressing the ever-growing challenges related to water quality, availability, and sustainability. This review paper extensively studies the applications of several nanomaterials including: graphene and its derivative-based adsorbents, CNTs, TiO NPs, ZnO NPs, Ag NPs, Fe NPs, and membrane-based nanomaterials in the purification of drinking water.

View Article and Find Full Text PDF

Among the perovskite oxide community, La-based perovskites have garnered considerable interest due to their remarkable properties including catalytic, electrocatalytic, photocatalytic, sensing, electrical, magnetic, and optical characteristics. Herein, rhodamine-B (RB) dye has been reported to be sono-catalytically decomposed by an ultrasound-assisted advanced oxidation process (AOP) using perovskite-type LaMnO (LMO) nanospheres synthesized via ultrasonic approach. Several physiochemical characterizations such as XRD, FT-IR, XPS, SEM, TEM, and SEM-EDS investigations were used to investigate the LMO perovskite nanospheres.

View Article and Find Full Text PDF

In this paper we have studied the density functional theory of four drugs ibuprofen, alendronate, Sulfasalazine and paracetamol with quartz, propylamine, trimethylamine functionalized quartz and carboxyl modified carbon nanotube. The attractive and repulsive interaction energies between drugs and quartz is obtained at various pH values. The attractive and repulsive energies are well correlated with experimental drug loading and releasing behavior by mesoporous silica nanoparticles.

View Article and Find Full Text PDF

A simple temperature-assisted solution interaction technique was used to functionalize and reduce graphene oxide (GO) using tetraethylenepentamine (TEPA) with less chemicals, low temperature, and without using other reducing agents. GO nanosheets, produced using a modified Hummers' method, were functionalized using two different GO:TEPA ratios (1:5 and 1:10). The reduction of GO was evaluated and confirmed by different spectroscopic and microscopic techniques.

View Article and Find Full Text PDF

The vast demand for petroleum industry products led to the increased production of oily wastewaters and has led to many possible separation technologies. In addition to production-related oily wastewater, direct oil spills are associated with detrimental effects on the local ecosystems. Accordingly, this review paper aims to tackle the oil spill cleanup issue as well as water separation by providing a wide range of graphene-based technologies.

View Article and Find Full Text PDF

Designing efficient 2D-bismuth oxychloride (BiOCl)/2D-g-CN heterojunction photocatalysts by the microwave-assisted method was studied in this work using different amounts of BiOCl plates coupled with g-CN nanosheets. The effects of coupling the 2D structure of g-CN with the 2D structure of BiOCl were systematically examined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence (PL), lifetime decay measurement, surface charges of the samples at various pH conditions, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The prepared photocatalysts were used for the degradation of amine-based pharmaceuticals, and nizatidine was used as a model pollutant to evaluate the photocatalytic activity.

View Article and Find Full Text PDF

Pharmaceuticals, newly recognized classes of environmental pollutants, are becoming increasingly problematic contaminants of either surface water or ground water around industrial and residential communities. Pharmaceuticals are constantly released into aquatic environments, mainly due to their widespread consumption and complicated removal in wastewater treatment plants. Heterogeneous photocatalysis appear to be one of the most destructive advanced oxidation processes (AOPs) for organic contaminants and are possible to obtain complete mineralization of organic pollutants into eco-friendly end products under visible and solar light irradiation.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are major pollutants and are considered to be one of the most important contaminants generated by human beings living in urban and industrial areas. Methyl tert-butyl ether (MTBE) is a VOC that has been widely used as a gasoline additive to reduce VOC emissions from motor vehicles. However, new gasoline additives like MTBE are having negative environmental impacts.

View Article and Find Full Text PDF

Novel template-free hierarchical-like In(2)S(3) hollow microspheres were synthesized using thiosemicarbazide (NH(2)NHCSNH(2)) as both a sulfur source and a capping ligand in a ethanol/water system. In this study, we demonstrate that several process parameters, such as the reaction time and precursor ratio, strongly influence the morphology of the final product. The In(NO(3))(3)/thiosemicarbazide ratios were found to effectively play crucial roles in the morphologies of the hierarchical-like In(2)S(3) hollow microsphere nanostructure.

View Article and Find Full Text PDF

A simple and template-free solution phase synthesis method has been developed for the preparation of novel CdS hollow microspheres using cadmium nitrate and thioacetamide precursors. In this manuscript, we demonstrate that process parameters such as the reaction time, precursor ratio, and reaction temperature strongly influence the morphology of the final product. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction (XRD), Raman spectroscopy, high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray diffraction (EDX) analysis, X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-DRS).

View Article and Find Full Text PDF

Cauliflower-like cadmium sulfide (CdS) microspheres composed of nanocrystals have been successfully synthesized by a hydrothermal method using poly(ethylene glycol) (PEG) as the template coordination agent and characterized by a variety of methods. Our experiments confirmed that the size of the CdS microspheres could be easily modified by controlling the chain length of PEG. Powder X-ray diffraction and Raman spectroscopy measurements revealed the cubic structure of the CdS microspheres; morphological studies performed by HR-SEM and HR-TEM methods showed the cauliflower-like structure of the synthesized CdS microspheres.

View Article and Find Full Text PDF

The adsorption of Copper(II) onto Amberjet 1500H and Ambersep 252H synthetic ion exchange resins have been studied. All the studies were conducted by a batch method to determine equilibrium and kinetic studies at the solution pH of 5.8 in the concentration ranges from 10 to 20mg/L.

View Article and Find Full Text PDF

This article has been retracted consistent with Elsevier Policy on Article Withdrawal. Please see . The Publisher apologizes for any inconvenience this may cause.

View Article and Find Full Text PDF

A novel adsorbent, aminated and protonated mesoporous alumina, was prepared and employed for the removal of copper from aqueous solution at concentrations between 5 and 30 mg/l, in batch equilibrium experiments, in order to determine its adsorption properties. The removal of copper by the adsorbents increases with increasing adsorbent dosages. The adsorption mechanism is assumed to be an ion exchange between copper and the hydrogen ions present on the surface of the mesoporous alumina.

View Article and Find Full Text PDF

The health threat of arsenic is well-known, and the U.S. EPA recommends the maximum contaminant level to be 0.

View Article and Find Full Text PDF