Publications by authors named "Selvakumari Ulagesan"

Grouper muscle satellite cells (GMSCs) from the seven-band grouper (Epinephelus septemfasciatus) were isolated, and their growth conditions were optimized (10% fetal bovine serum, 24°C, 10 ng/mL bFGF). The cells were immortalized at passage 14 and designated as grouper immortalized muscle satellite cells (GIMSCs). DNA barcoding confirmed the grouper origin of both GMSC and GIMSC lines.

View Article and Find Full Text PDF

Exposure to tert-butyl hydroperoxide (t-BHP) leads to cytotoxicity and oxidative stress in various organs and cell types. The bioactive peptides extracted from Oysters exhibit marked antioxidant activity. The impacts of peptides on t-BHP-triggered oxidative stress remain largely unknown.

View Article and Find Full Text PDF

Olive flounder () muscle satellite cells (OFMCs) were obtained by enzymatic primary cell isolation and the explant method. Enzymatic isolation yielded cells that reached 80% confluence within 8 days, compared to 15 days for the explant method. Optimal OFMC growth was observed in 20% fetal bovine serum at 28 °C with 0.

View Article and Find Full Text PDF

Wound healing is widely recognized as a critical issue impacting the healthcare sector in numerous countries. The application of wound dressings multiple times in such instances can result in tissue damage, thereby increasing the complexity of wound healing. With the aim of tackling this necessity, in the present study, we have formulated a hydrogel using natural polysaccharide κ-carrageenan and phycobiliprotein R-phycoerythrin from .

View Article and Find Full Text PDF

The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG).

View Article and Find Full Text PDF

A mesoporous silica-based drug delivery system (MS@PNIPAm-PAAm NPs) was synthesized by conjugating the PNIPAm-PAAm copolymer onto the mesoporous silica (MS) surface as a gatekeeper that responds to temperature and pH changes. The drug delivery studies are carried out in vitro at different pH (7.4, 6.

View Article and Find Full Text PDF

Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases.

View Article and Find Full Text PDF

Oxidative stress is an automatic mechanism responsible for the commencement and continuance of liver injury. In this study, an antioxidative peptide Val-Thr-Ala-Leu (VTAL) was purified from simulated gastrointestinal digestion of protein hydrolysates of the triploid oyster . Significant antioxidant activity was identified, as well as a protective effect against acetaminophen (APAP)-induced human liver cancer (HepG2) cells.

View Article and Find Full Text PDF

Excessive production of reactive oxygen and nitrogen species may result in oxidative damage to tissues and organs. Oxidative stress is a pathological mechanism that contributes to the initiation and progression of liver injury. In the present study, antioxidative peptides purified from simulated gastrointestinal-digested (SGID) protein hydrolysate of Pyropia yezoensis, showed significant antioxidant activity and also showed a protective effect against acetaminophen (N-acetyl-p-aminophenol, APAP) -induced injury in HepG2 (human liver cancer cells) cells.

View Article and Find Full Text PDF

Oysters are saltwater bivalves with high nutritional and medicinal value that are consumed widely around the world. As well as being highly nutritious, oysters are a low-calorie, low-cholesterol source of protein and an exceptional source of zinc, which strengthens the immune system; and a rich source of bioactive compounds, which comprise various biological activities. The present review summarizes the biological applications and bioactive compounds from oyster shells, whole tissue, gill tissue, and mantle tissue.

View Article and Find Full Text PDF

Phycoerythrin is a major light-harvesting pigment of red algae and cyanobacteria that is widely used as a fluorescent probe or as a colorant in the food and cosmetic industries. In this study, phycoerythrin was extracted from the red algae and purified by ammonium sulfate precipitation and various chromatography methods. The purified phycoerythrin was analyzed by UV-visible and fluorescence spectroscopy.

View Article and Find Full Text PDF

Targeting cancer cells with small nanoparticles is a novel and promising approach to cancer therapy. Breast cancer is the most common cancer afflicting women worldwide. In the present study, silver nanoparticles (AgNPs) were synthesized using the aqueous extract of the marine alga Capsosiphon (C.

View Article and Find Full Text PDF

Ferritins are iron-binding proteins that are basically participated in iron storage, detoxification, and immune response. In the present study, ferritin gene from the marine red algae was cloned into a pET21d expression vector. High-efficiency transformation was performed in BL21, the recombinant protein was expressed by induction with 0.

View Article and Find Full Text PDF

Marine algae play key roles in several medical, pharmaceutical, agricultural, and aquacultural applications. Furthermore, biosynthesized nanomaterials are becoming an alternative to conventional antibiotics in cost-effective, biocompatible, and non-toxic treatments for bacterial infections. This study features biogenic synthesis of silver nanoparticles using an aqueous extract of the marine red algae Pyropia yezoensis.

View Article and Find Full Text PDF

Cyclophilins are highly conserved proteins associated with peptidyl-prolyl cis-trans isomerase activity (PPIase). The present study was designed to analyze the biological activity of recombinant cyclophilin from the marine red algae Pyropia yezoensis (PyCyp). The cyclophilin gene from P.

View Article and Find Full Text PDF

A peptide might be an exciting biomaterial or template for the development of novel wound-healing agents. In this report, it was isolated from the terrestrial snail Cryptozona bistrialis by enzymatic digestion and was evaluated for its in vitro wound-healing activity in NIH/3T3 mouse fibroblasts cell line and in vivo wound-healing activity in normal and diabetic-induced Wistar albino rats. The C.

View Article and Find Full Text PDF

This study is designed to explore the phytochemical, antibacterial and wound healing activity of methanolic stem extract of Musa paradisiaca Linn. (Banana). The phytochemical analysis was performed for the methanolic stem extract of Musa paradisiaca Linn.

View Article and Find Full Text PDF