Publications by authors named "Selvakumar Veeralakshmi"

Designing the effective metallodrugs with amphiphilic nature is an active approach for the biomedical applications such as chemotheraphy, bioimaging, drug carrier, etc. To elaborate this, some fluorescent emissive surfactant-ruthenium(II) complexes and its precursor ruthenium(II) complexes have been interacted with calf thymus DNA (CT-DNA) for understanding the biophysical impacts of head and tail parts of the metallosurfactants. Here, DNA binding studies were examined by UV-visible absorption, fluorescence, circular dichroism and viscosity measurements.

View Article and Find Full Text PDF

For efficient designing of metallodrugs, it is imperative to analyse the binding affinity of those drugs with drug-carrying serum albumins to comprehend their structure-activity correlation for biomedical applications. Here, cobalt(II) and cobalt(III) complexes comprising three phendione ligands, [Co(phendione)]Cl () and [Co(phendione)]Cl (), where, phendione = 1,10-phenanthroline-5,6-dione, has been chosen to contrast the impact of their hydrophobicity and ionicity on binding with bovine serum albumin (BSA) through spectrophotometric titrations. The attained hydrophobicity values using octanol/water partition coefficient method manifested that complex is more hydrophobic than complex , which could be attributed to lesser charge on its coordination sphere.

View Article and Find Full Text PDF

To develop surfactant-based metallodrugs, it is very important to know about their hydrophobicity, micelle forming capacity, their interaction with biomacromolecules such as proteins and nucleic acids, and biological activities. Here, diethylenetriamine (dien) and tetradecylamine ligand (TA) based surfactant-cobalt(III) complexes with single chain domain, [Co(dien)(TA)Cl]ClO (1) and double chain domain [Co(dien)(TA)Cl](ClO) (2) were chosen to study the effect of hydrophobicity on the interaction with human serum albumin and calf thymus DNA. The obtained results showed that (i) single chain surfactant-cobalt(III) complex (1) interact with HSA and DNA via electrostatic interaction and groove binding, respectively; (ii) double chain surfactant-cobalt(III) complex (2) interact with HSA and DNA via hydrophobic interaction and partial intercalation, respectively, due to the play of hydrophobicity by single and double chain domains.

View Article and Find Full Text PDF