Publications by authors named "Selvakani Prabakaran"

Repairing segmental bone deformities after resection of dangerous bone tumors is a long-standing clinical issue. The study's main objective is to synthesize a natural bioactive compound-loaded bimetal-substituted hydroxyapatite (BM-HA)-based composite for bone regeneration. The bimetal (copper and cadmium)-substituted HAs were prepared by the sol-gel method and reinforced with biocompatible polyacrylamide (BM-HA/PAA).

View Article and Find Full Text PDF

The clay/polymeric matrices have much attention from researchers in bio-medical applications due to their numerous uses. This study introduces new orthopedic titanium (Ti) implant with increasing bio-activity by treating the surface of the Ti implant with bio-compatible composite coating. Wollastonite (WST) clay combined minerals (Mgand Gd) substituted hydroxyapatite (HAP)/Starch composite was prepared using in-situ co-precipitation method.

View Article and Find Full Text PDF

One of the very reliable, attractive, and cheapest techniques for synthesizing nanofibers for biomedical applications is electrospinning. Here, we have created a novel nanofibrous composite coated Ti plate to mimic an Extra Cellular Matrix (ECM) of native bone in order to enhance the bone tissue regeneration. An electrospun fibrous composite was obtained by the combination of minerals (Zn, Mg, Si) substituted hydroxyapatite (MHAP)/Polyethylene Glycol (PEG)/Cissus quadrangularis (CQ) extract.

View Article and Find Full Text PDF

Purpose: To develop the surface-treated metal implant with highly encouraged positive properties, including high anti-corrosiveness, bio-activeness and bio-compatibleness for orthopedic applications.

Methods: In this work, the surface of commercially pure titanium (Ti) metal was treated with bio-compatible polydopamine (PD) by merely immersing the Ti plate in PD solution. The composite of trivalent lanthanide minerals (La, Ce and Gd)-substituted hydroxyapatite (MHAP) with (AV) gel was prepared and coated on the PD-Ti plate by electrophoretic deposition (EPD) method.

View Article and Find Full Text PDF

Currently, bio-mimetic material synthetic processes are involved in bone implant design which is closely related to natural bone. In this work, Zinc, Cerium and Selenium substituted hydroxyapatite/ Poly (sorbitol sebacate glutamate) (Zn, Ce, Se-HAP/PSSG, M-HAP/PSSG) composite was prepared by sol-gel method as a bio-mimetic materials for bone implantation. The physiochemical characterizations of M-HAP/PSSG was analyzed by Fourier transform infra red (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) and High resolution transmission electron microscopy (HRTEM).

View Article and Find Full Text PDF