Publications by authors named "Selosse M"

The plant kingdom exhibits a diversity of nutritional strategies, extending beyond complete autotrophy. In addition to full mycoheterotrophs and holoparasites, it is now recognized that a greater number of green plants than previously assumed use partly of fungal carbon. These are termed partial mycoheterotrophs or mixotrophs.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the mycorrhizal fungi associated with Vanilla plants on Réunion Island, highlighting the diversity of fungal communities based on root types and surrounding tree species.
  • Researchers found distinct fungal communities in epiphytic and terrestrial roots, with certain pathogens present that didn't cause visible disease symptoms.
  • The main mycorrhizal fungi identified were from the Tulasnellaceae family, which appeared in both Vanilla roots and nearby trees, suggesting a potential nutrient exchange mechanism that warrants further research.
View Article and Find Full Text PDF

Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced.

View Article and Find Full Text PDF

In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture.

View Article and Find Full Text PDF
Article Synopsis
  • Plants have diverse fungal communities (mycobiota) that are crucial for their growth, but how these communities are formed is not well understood.
  • Researchers studied the mycobiota of Haloxylon salicornicum by comparing fungi in bulk soil and seeds with those in adult plants and seedlings.
  • They found that fungi are partially passed from seeds to seedlings (vertical transmission), while adult plants show a mix of fungi from the root system and surrounding soil (horizontal transmission), highlighting the complexity of mycobiota assembly during plant development.
View Article and Find Full Text PDF

Pyrola japonica, a member of the family Ericaceae, is a mixotroph that grows on forest floors and obtains carbon (C) from both its photosynthesis and its mycorrhizal fungi. Its mycorrhizal community is dominated by Russulaceae. However, the mechanism of its C acquisition and its flexibility are not well understood.

View Article and Find Full Text PDF

Emblematic Vachellia spp. naturally exposed to hyper-arid conditions, intensive grazing, and parasitism maintain a high nitrogen content and functional mutualistic nitrogen-fixing symbioses. AlUla region in Saudi Arabia has a rich history regarding mankind, local wildlife, and fertility islands suitable for leguminous species, such as the emblematic Vachellia spp.

View Article and Find Full Text PDF

Mycorrhizal symbioses (mycorrhizas) of Ericaceae, including ericoid mycorrhiza (ErM), have been mainly studied in the Northern Hemisphere, although the highest diversity of ericaceous plants is located in the Southern Hemisphere, where several regions remain largely unexplored. One of them is South America, which harbors a remarkably high diversity of Ericaceae (691 species and 33 genera) in a wide range of environmental conditions, and a specific mycorrhizal type called cavendishioid. In this review, we compile all available information on mycorrhizas of Ericaceae in South America.

View Article and Find Full Text PDF
Article Synopsis
  • * Orchids were grown from seeds in sterile conditions and inoculated with either Tulasnellaceae or Psathyrellaceae fungi, revealing distinct differences in growth patterns; those with Psathyrellaceae developed more shoots and specialized underground organs called coralloid rhizomes.
  • * The study found that light conditions influence the orchid's nutritional needs from fungi, with notable differences in carbon and nitrogen uptake based on which fungal partner was present.
View Article and Find Full Text PDF

Human activities have affected the surrounding natural ecosystems, including belowground microorganisms, for millennia. Their short- and medium-term effects on the diversity and the composition of soil microbial communities are well-documented, but their lasting effects remain unknown. When unoccupied for centuries, archaeological sites are appropriate for studying the long-term effects of past human occupancy on natural ecosystems, including the soil compartment.

View Article and Find Full Text PDF

Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Yet little is known about microbial community resistance and adaptation to disturbances over time. This hampers our ability to determine the recovery latency of microbial interactions after disturbances, with fundamental implications for ecosystem functioning and conservation measures.

View Article and Find Full Text PDF

Background: Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning.

View Article and Find Full Text PDF

Cyanobacteria have a long evolutionary history, well documented in marine rocks. They are also abundant and diverse in terrestrial environments; however, although phylogenies suggest that the group colonized land early in its history, paleontological documentation of this remains limited. The Rhynie chert (407 Ma), our best preserved record of early terrestrial ecosystems, provides an opportunity to illuminate aspects of cyanobacterial diversity and ecology as plants began to radiate across the land surface.

View Article and Find Full Text PDF

Mycorrhizae are ubiquitous symbioses established between fungi and plant roots. Orchids, in particular, require compatible mycorrhizal fungi for seed germination and protocorm development. Unlike arbuscular mycorrhizal fungi, which have wide host ranges, orchid mycorrhizal fungi are often highly specific to their host orchids.

View Article and Find Full Text PDF

Viruses can provide new biological functions to plants and animals. Some viruses persisting at low levels in plants might confer resistance to stress and parasites. In animals, more numerous examples of genes originating from viruses and used by different organisms have been described.

View Article and Find Full Text PDF

Background And Aims: Historical changes in environmental conditions and colonization-extinction dynamics have a direct impact on the genetic structure of plant populations. However, understanding how past environmental conditions influenced the evolution of species with high gene flow is challenging when signals for genetic isolation and adaptation are swamped by gene flow. We investigated the spatial distribution and genetic structure of the widespread terrestrial orchid Epipactis helleborine to identify glacial refugia, characterize postglacial population dynamics and assess its adaptive potential.

View Article and Find Full Text PDF