Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRAS PDAC).
View Article and Find Full Text PDFColorectal cancer (CRC) is a heterogenous malignancy underpinned by dysregulation of cellular signaling pathways. Previous literature has implicated aberrant JAK/STAT3 signal transduction in the development and progression of solid tumors. In this study we investigate the effectiveness of inhibiting JAK/STAT3 in diverse CRC models, establish in which contexts high pathway expression is prognostic and perform in depth analysis underlying phenotypes.
View Article and Find Full Text PDFCXCL8 is an inflammatory chemokine elevated in the colorectal cancer (CRC) tumour microenvironment. CXCR2, the major receptor for CXCL8, is predominantly expressed by neutrophils. In the cancer setting, CXCL8 plays important roles in neutrophil chemotaxis, facilitating angiogenesis, invasion, and metastasis.
View Article and Find Full Text PDFBackground: To understand the relationship between key non-canonical NF-κB kinase IKK-alpha(α), tumour mutational profile and survival in primary colorectal cancer.
Methods: Immunohistochemical expression of IKKα was assessed in a cohort of 1030 patients who had undergone surgery for colorectal cancer using immunohistochemistry. Mutational tumour profile was examined using a customised gene panel.
Background & Aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC.
Methods: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress.
Biochem Biophys Res Commun
August 2005
The molecular events that underlie prion disease neuropathology remain poorly defined. Within the hippocampus of the ME7/CV mouse scrapie model, profound CA1 neuronal loss occurs between 160 and 180 days post-infection (dpi). To elucidate the molecular events that may contribute to this neuronal loss, we have applied Affymetrix high-density oligonucleotide probe arrays to the study of ME7-infected hippocampal gene expression at 170 dpi.
View Article and Find Full Text PDFThe temporal course of cerebral cytokine gene expression was investigated in the ME7/CV murine scrapie model to determine any association with neuropathological events. Analysis by RNase protection assay (RPA) demonstrated no transcripts for ILs 2, 3, 4, 5, 6, 7, 10, 12p40 and 13, granulocyte macrophage colony-stimulating factor, IFN-gamma or lymphotoxin-alpha at any time during the course of this disease. Transcripts for transforming growth factor-beta 1 were constitutively expressed in both control and scrapie-infected brain and were elevated at terminal disease.
View Article and Find Full Text PDF