Immunoglobulin G (IgG) antibodies that bind their cognate antigen in a pH-dependent manner (acid-switched antibodies) can release their bound antigen for degradation in the acidic environment of endosomes, while the IgGs are rescued by the neonatal Fc receptor (FcRn). Thus, such IgGs can neutralize multiple antigens over time and therefore be used at lower doses than their non-pH-responsive counterparts. Here, we show that light-chain shuffling combined with phage display technology can be used to discover IgG1 antibodies with increased pH-dependent antigen binding properties, using the snake venom toxins, myotoxin II and α-cobratoxin, as examples.
View Article and Find Full Text PDFBothrops and Lachesis are two of Brazil's medically most relevant snake genera, causing tens of thousands of bites annually. Fortunately, Brazil has good accessibility to high-quality antivenoms at the genus and inter-genus level, enabling the treatment of many of these envenomings. However, the optimal use of these treatments requires that the snake species responsible for the bite is determined.
View Article and Find Full Text PDFThree-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression.
View Article and Find Full Text PDFBackground: Brazil is home to a multitude of venomous snakes; perhaps the most medically relevant of which belong to the Bothrops genus. Bothrops spp. are responsible for roughly 70% of all snakebites in Brazil, and envenomings caused by their bites can be treated with three types of antivenom: bothropic antivenom, bothro-lachetic antivenom, and bothro-crotalic antivenom.
View Article and Find Full Text PDF