Transcriptome analysis experiments enable researchers to gain extensive insights into the molecular mechanisms underlying cell physiology and disease. Oxford Nanopore Technologies (ONT) has recently been developed as a fast, miniaturized, portable, and cost-effective alternative to next-generation sequencing (NGS). However, RNA-Seq data analysis software that exploits ONT portability and allows scientists to easily analyze ONT data everywhere without bioinformatics expertise is not widely available.
View Article and Find Full Text PDFCystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that can lead to terminal respiratory failure. Ultrafine carbonaceous particles, which are ubiquitous in ambient urban and indoor air, are increasingly considered as major contributors to the global health burden of air pollution. However, their effects on the expression of CFTR and associated genes in lung epithelial cells have not yet been investigated.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs), dioxin-like compounds (DLCs) and structurally-related environmental pollutants may contribute to the pathogenesis of various diseases and disorders, primarily by activating the aryl hydrocarbon receptor (AHR) and modulating downstream cellular responses. Accordingly, AHR is considered an attractive molecular target for preventive and therapeutic measures. However, toxicological risk assessment of AHR-modulating compounds as well as drug development is complicated by the fact that different ligands elicit remarkably different AHR responses.
View Article and Find Full Text PDFDue to their neurodevelopmental toxicity, flame retardants (FRs) like polybrominated diphenyl ethers are banned from the market and replaced by alternative FRs, like organophosphorus FRs, that have mostly unknown toxicological profiles. To study their neurodevelopmental toxicity, we evaluated the hazard of several FRs including phased-out polybrominated FRs and organophosphorus FRs: 2,2',4,4'-tetrabromodiphenylether (BDE-47), 2,2',4,4',5-pentabromodiphenylether (BDE-99), tetrabromobisphenol A, triphenyl phosphate, tris(2-butoxyethyl) phosphate and its metabolite bis-(2-butoxyethyl) phosphate, isodecyl diphenyl phosphate, triphenyl isopropylated phosphate, tricresyl phosphate, tris(1,3-dichloro-2-propyl) phosphate, tert-butylphenyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, tris(1-chloroisopropyl) phosphate, and tris(2-chloroethyl) phosphate. Therefore, we used a human cell-based developmental neurotoxicity (DNT) in vitro battery covering a large variety of neurodevelopmental endpoints.
View Article and Find Full Text PDF