Mater Sci Eng C Mater Biol Appl
June 2017
Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required.
View Article and Find Full Text PDFHuman hair keratins are readily available, easy to extract, and eco-friendly materials with natural bioactivities. Keratin-based materials have been studied for applications such as cell culture substrates, internal hemostats for liver injury, and conduits for peripheral nerve repair. However, there are limited reports of using keratin-based 3D scaffolds for cell culture in vitro.
View Article and Find Full Text PDFDiabetic wounds are imbued with an early excessive and protracted reactive oxygen species production. Despite the studies supporting PPARβ/δ as a valuable pharmacologic wound-healing target, the therapeutic potential of PPARβ/δ agonist GW501516 (GW) as a wound healing drug was never investigated. Using topical application of polymer-encapsulated GW, we revealed that different drug release profiles can significantly influence the therapeutic efficacy of GW and consequently diabetic wound closure.
View Article and Find Full Text PDFCellular events are regulated by the interaction between integrin receptors in the cell membrane and the extracellular matrix (ECM). Hence, ECM, as a material, can potentially play an instructive role in cell-material interactions. Currently, adipose tissue in the form of lipoaspirate is often discarded.
View Article and Find Full Text PDFImpaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking.
View Article and Find Full Text PDFPurpose: To evaluate the effect of a biodegradable microfilm with sustained release of prednisolone acetate (PA) on postoperative wound healing after experimental glaucoma filtration surgery (GFS).
Methods: Biodegradable microfilms composed of poly (D-, L-lactide-co-caprolactone) (PLC) were fabricated and then pre-loaded PA-20% total weight. Fourteen New Zealand White rabbits were randomly divided into 3 treatment groups: GFS alone (n=4), GFS with PLC microfilms (n=4) and GFS with PA-loaded microfilm (n=6).
Topical medication remains the first line treatment of glaucoma; however, sustained ocular drug delivery via topical administration is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Currently, daily topical administration for lowering the intra-ocular pressure (IOP), has many limitations, such as poor patient compliance and ocular allergy from repeated drug administration.
View Article and Find Full Text PDFSustained ocular drug delivery is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Biodegradable subconjunctival implants with controlled drug release may circumvent these two problems.
View Article and Find Full Text PDF