Biomimetics (Basel)
April 2024
Preclinical testing of medical devices is an essential step in the product life cycle, whereas testing of cardiovascular implants requires specialised testbeds or numerical simulations using computer software Ansys 2016. Existing test setups used to evaluate physiological scenarios and test cardiac implants such as mock circulatory systems or isolated beating heart platforms are driven by sophisticated hardware which comes at a high cost or raises ethical concerns. On the other hand, computational methods used to simulate blood flow in the cardiovascular system may be simplified or computationally expensive.
View Article and Find Full Text PDFLocalized surface plasmon resonance (LSPR) in plasmonic nanoparticles propels the field of plasmo-electronics, holding promise for transformative optoelectronic devices through efficient light-to-current conversion. Plasmonic excitations strongly influence the charge distribution within nanoparticles, giving rise to electromagnetic fields that can significantly impact the macroscopic charge flows within the nanoparticle housing material. In this study, we present evidence of ultralow, unconventional breathing currents resulting from dynamic irradiance interactions between widely separated nanoparticles, extending far beyond conventional electron (quantum) tunneling distances.
View Article and Find Full Text PDFSagittal synostosis is a condition caused by the fused sagittal suture and results in a narrowed skull in infants. Spring-assisted cranioplasty is a correction technique used to expand skulls with sagittal craniosynostosis by placing compressed springs on the skull before six months of age. Proposed methods for surgical planning in spring-assisted sagittal craniosynostosis correction provide information only about the skull anatomy or require iterative finite element simulations.
View Article and Find Full Text PDFGlobal warming due to increased outdoor carbon dioxide (CO) levels may cause several health problems such as headaches, cognitive impairment, or kidney dysfunction. It is predicted that further increases in CO levels will increase the morbidity and mortality of patients affected by a variety of diseases. For instance, patients with Chronic Obstructive Pulmonary Disease (COPD) may suffer cognitive impairments or intracranial bleeding due to an increased cerebral blood flow rate.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2024
Anaemia is common in end-stage heart failure patients supported with continuous flow left ventricular assist device (CF-LVAD) and is associated with adverse outcomes such as heart failure readmission. This study evaluates the haemodynamic effects of anaemia on cardiac function and cerebral blood flow in heart failure patients supported with CF-LVAD using computational simulations. A dynamic model simulating cardiac function, systemic, pulmonary and cerebral circulations, cerebral flow autoregulatory mechanisms and gas contents in blood was used to evaluate the effects of anaemia and iron deficiency in heart failure and during CF-LVAD support.
View Article and Find Full Text PDFBiomimetics (Basel)
August 2023
This study proposes a design approach and the development of a low-power planar biped robot named YU-Bibot. The kinematic structure of the robot consists of six independently driven axes, and it weighs approximately 20 kg. Based on biomimetics, the robot dimensions were selected as the average anthropomorphic dimensions of the human lower extremities.
View Article and Find Full Text PDFCardiogenic shock (CS) is part of a clinical syndrome consisting of acute left ventricular failure causing severe hypotension leading to inadequate organ and tissue perfusion. The most commonly used devices to support patients affected by CS are Intra-Aortic Balloon Pump (IABP), Impella 2.5 pump and Extracorporeal Membrane Oxygenation.
View Article and Find Full Text PDFBioengineering (Basel)
January 2023
Moyamoya disease is a cerebrovascular disorder which causes a decrease in the cerebral blood flow rate. In this study, a lumped parameter model describing the pressures and flow rates in the heart chambers, circulatory system, and cerebral circulation with the main arteries in the circle of Willis, pial circulation, cerebral capillaries, and veins was used to simulate Moyamoya disease with and without coarctation of the aorta in adults and children. Cerebral blood flow rates were 724 mL/min and 1072 mL/min in the healthy adult and child cardiovascular system models.
View Article and Find Full Text PDFBackground: Hypertrophic cardiomyopathy (HCM) is an inherited autosomal dominant heart disease, characterized by increased left ventricular wall thickness and abnormal loading conditions. Imaging modalities are the first choice for diagnosis and risk stratification. Although heart dimensions have been characterized widely in HCM adults from cardiac imaging, there is limited information about children affected by HCM.
View Article and Find Full Text PDFPurpose: Lumped parameter modelling has been widely used to simulate cardiac function and physiological scenarios in cardiovascular research. Whereas several patient-specific lumped parameter models have been reported for adults, there is a limited number of studies aiming to simulate cardiac function in children. The aim of this study is to simulate patient-specific cardiovascular dynamics in children diagnosed with dilated cardiomyopathy, using a lumped parameter model.
View Article and Find Full Text PDFLimited information is available on the effect of sagittal craniosynostosis (CS) on morphological and material properties of the parietal bone. Understanding these properties would not only provide an insight into bone response to surgical procedures but also improve the accuracy of computational models simulating these surgeries. The aim of the present study was to characterise the mechanical and microstructural properties of the cortical table and diploe in parietal bone of patients affected by sagittal CS.
View Article and Find Full Text PDFBackground: Spring-Assisted Posterior Vault Expansion has been adopted at Great Ormond Street Hospital for Children, London, UK to treat raised intracranial pressure in patients affected by syndromic craniosynostosis, a congenital calvarial anomaly which causes premature fusion of skull sutures. This procedure aims at normalising head shape and augmenting intracranial volume by means of metallic springs which expand the back portion of the skull. The aim of this study is to create and validate a 3D numerical model able to predict the outcome of spring cranioplasty in patients affected by syndromic craniosynostosis, suitable for clinical adoption for preoperative surgical planning.
View Article and Find Full Text PDFHeart failure is a significant cause of mortality in children with cardiovascular diseases. Treatment of heart failure depends on patients' symptoms, age, and severity of their condition, with heart transplantation required when other treatments are unsuccessful. However, due to lack of fitting donor organs, many patients are left untreated, or their transplant is delayed.
View Article and Find Full Text PDFLambdoid craniosynostosis (LC) is a rare non-syndromic craniosynostosis characterised by fusion of the lambdoid sutures at the back of the head. Surgical correction including the spring assisted cranioplasty is the only option to correct the asymmetry at the skull in LC. However, the aesthetic outcome from spring assisted cranioplasty may remain suboptimal.
View Article and Find Full Text PDFComput Biol Med
December 2020
Continuous Flow Left Ventricular Assist Devices (CF-LVADs) generally operate at a constant speed whilst supporting a failing heart. However, constant speed CF-LVAD support may cause complications and increase the morbidity rates in the patients. Therefore, different varying speed operating modes for CF-LVADs have been proposed to generate more physiological blood flow, which may reduce complication rates under constant speed CF-LVAD support.
View Article and Find Full Text PDFSpring-assisted surgery for the correction of scaphocephaly has gained popularity over the past 2 decades. Our unit utilizes standardized torsional springs with a central helix for spring-assisted surgery. This design allows a high degree of accuracy and reproducibility of the force vectors and force distance curves.
View Article and Find Full Text PDFUnicoronal craniosynostosis is the second most common type of nonsyndromic craniosynostosis: it is characterized by ipsilateral forehead and fronto-parietal region flattening with contralateral compensatory bossing. It is a complex condition; therefore, which is difficult to treat because of the asymmetry in the orbits, cranium, and face. The aim of this study is to understand optimal osteotomy locations, dimensions, and force requirements for surgical operations of unicoronal craniosynostosis using a patient-specific finite element model and - at the same time - to evaluate the potential application of a new device made from Nitinol which was developed to expand the affected side of a unicoronal craniosynostosis skull without performing osteotomies.
View Article and Find Full Text PDFTime-varying elastance models can simulate only the pressure and volume signals in the heart chambers while the diagnosis of clinical cases and evaluation of different treatment techniques require more information. In this study, an extended model utilizing the geometric dimensions of the heart chambers was developed to describe the cardiac function. The new cardiac model was evaluated by simulating a healthy and dilated cardiomyopathy (DCM) condition for adults and children.
View Article and Find Full Text PDFNeurological complications in continuous flow left ventricular assist device (CF-LVAD) patients are the second-leading risk of death after multi-organ failure. They are associated with altered blood flow in the cardiovascular system because of CF-LVAD support. Moreover, an impaired cerebral autoregulation function may also contribute to complications such as hyperperfusion in the cerebral circulation under mechanical circulatory support.
View Article and Find Full Text PDFMitral regurgitation is a common mitral valve dysfunction which may lead to heart failure. Because of the rapid aging of the population, conventional surgical repair and replacement of the pathological valve are often unsuitable for about half of symptomatic patients, who are judged high-risk. Transcatheter valve implantation could represent an effective solution.
View Article and Find Full Text PDFThe aim of this study is to understand whether the phasic Continuous Flow Left Ventricular Assist Device (CF-LVAD) support would increase the arterial pulsatility. A Micromed DeBakey CF-LVAD was used to apply phasic support in an ex-vivo experimental platform. CF-LVAD was operated over a cardiac cycle by phase-shifting the pulsatile pump control with respect to the heart cycle, in 0.
View Article and Find Full Text PDFContinuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD.
View Article and Find Full Text PDF