Polyethylene terephthalate (PET) waste has become a major challenge for the conservation of the environment due to difficult degradation. For this reason, it is important to develop new recycling strategies for reusing this waste. In this work, the electrospinning technique was used to synthesize composite nanofibers of polyvinylpyrrolidone (PVP), recycling PET (RPET) that was obtained from the chemical recycling of postconsumer PET with glycolysis and styrene (ST) as a crosslinking agent.
View Article and Find Full Text PDFRare earth (RE- Pr, Er and Nd) doped ZnO nanostructures were prepared through simple wet chemical precipitation route. The RE doping induced interesting morphological transition from spherical to flower like structures were analyzed. The X-ray diffraction (XRD) measurements revealed that the prepared materials were of highly crystalline in nature and RE dopant ions did not altered the crystal structure of ZnO.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2019
Nanocomposites of reduced graphene oxide (RGO) with ferromagnetic α-Fe₂O₃ nanoparticles have been prepared in-situ by thermal treatment. The structure and morphology of the hybrid material were studied by X-ray photoelectron spectroscopy, Raman, X-ray diffraction, and transmission electron microscopy. The results show a hybrid material highly modified with α-Fe₂O₃ nanoparticles distributed on the graphene surface.
View Article and Find Full Text PDFCellulose, the most abundant biopolymer on earth, is produced at different ratios by all land plants. Since the morphology and crystallinity of cellulose are key factors involved in its enzymatic hydrolysis, in the present work, we tackled the study of the effects of such variables on the nanocellulose conversion into glucose. Cellulase from Trichoderma sp at 37 °C was used to produce glucose, the best results were found for the cellulose nanoplatelets (S-CNP) after 60 h of hydrolysis, which afforded a conversion of 47% to glucose, in contrast to 15% for the non-purified sample (W-CP) and 22% for microcrystalline cellulose (MCC20) used as control.
View Article and Find Full Text PDFTin disulfide (SnS ) is a binary chalcogenide semiconductor having applications in solar cells, energy storage, and optoelectronics. SnS thin films were deposited by spraying the nanocolloids synthesized by pulsed laser ablation in liquid. The structure, morphology, and optoelectronic properties were studied for films obtained from two liquid media (ethanol and isopropanol) and after heat treatments at various temperatures.
View Article and Find Full Text PDFTin sulfide (SnS) nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL) technique using an Nd:YAG laser operated at 532 nm. SnS thin films were deposited by spraying the colloidal suspension onto the heated substrates. The influence of different liquid media (dimethyl formamide and isopropyl alcohol) on the thin film properties were studied.
View Article and Find Full Text PDFThis research demonstrates that a nylon nanofiber (NNF) mat can be an effective mechanical reinforcement to polyaniline (PANI) thin films. Nanofibers of ca. 250 nm diameter were produced by electrospinning of a nylon 6 solution in formic acid.
View Article and Find Full Text PDF