Publications by authors named "Selene Nunez Cruz"

As we show in this study, NAMPT, the key rate-limiting enzyme in the salvage pathway, one of the three known pathways involved in NAD synthesis, is selectively over-expressed in anaplastic T-cell lymphoma carrying oncogenic kinase NPM1::ALK (ALK + ALCL). NPM1::ALK induces expression of the NAMPT-encoding gene with STAT3 acting as transcriptional activator of the gene. Inhibition of NAMPT affects ALK + ALCL cells expression of numerous genes, many from the cell-signaling, metabolic, and apoptotic pathways.

View Article and Find Full Text PDF

Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has made significant success in treating hematological malignancies, paving the way for solid tumors like prostate cancer. However, progress is impeded by a paucity of suitable target antigens. A novel carbohydrate antigen, F77, is expressed on both androgen-dependent and androgen-independent prostate cancer cells, making it a potential immunotherapy target.

View Article and Find Full Text PDF

Many hematologic malignancies are not curable with chemotherapy and require novel therapeutic approaches. Chimeric antigen receptor (CAR) T-cell therapy is 1 such approach that involves the transfer of T cells engineered to express CARs for a specific cell-surface antigen. CD38 is a validated tumor antigen in multiple myeloma (MM) and T-cell acute lymphoblastic leukemia (T-ALL) and is also overexpressed in acute myeloid leukemia (AML).

View Article and Find Full Text PDF

This study reports that hairy and enhancer of split homolog-1 (HES1), known to repress gene transcription in progenitor cells of several cell lineages, was strongly expressed in cells and tissues of T-cell lymphoma expressing the oncogenic chimeric tyrosine kinase nucleophosmin (NPM)-anaplastic lymphoma kinase [ALK; ALK T-cell lymphoma (TCL)]. The structural analysis of the Orange domain of HES1 indicated that HES1 formed a highly stable homodimer. Of note, repression of HES1 expression led to inhibition of ALK TCL cell growth in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Evasion of tumor immunity and resistance to treatments in solid tumors is supported by an immunosuppressive tumor microenvironment (TME), characterized by factors like regulatory T cells and adenosine.
  • The study identified that these TME factors downregulate the IFNAR1 receptor on CD8 cytotoxic T lymphocytes (CTLs) through the action of PARP11, which is increased in CTLs within tumors.
  • Inhibition of PARP11 not only maintains IFNAR1 levels but also boosts CTL activity against tumors, enhancing the effectiveness of chimeric antigen receptor (CAR) T cell therapies.
View Article and Find Full Text PDF

Chimaeric antigen receptor (CAR) T cells can generate durable clinical responses in B-cell haematologic malignancies. The manufacturing of these T cells typically involves their activation, followed by viral transduction and expansion ex vivo for at least 6 days. However, the activation and expansion of CAR T cells leads to their progressive differentiation and the associated loss of anti-leukaemic activity.

View Article and Find Full Text PDF

Interleukin-2 (IL-2) is a central T cell cytokine that promotes T cell proliferation and effector function; however, toxicity due to its pluripotency limits its application to enhance CAR T cell immunotherapy. Previously, mouse IL-2 and its cognate receptor were engineered to create an orthogonal () cytokine-cytokine receptor pair capable of delivering an IL-2 signal without toxicity. Here, we engineered a human orthogonal IL-2 (hIL-2) and human orthogonal IL-2Rβ (hIL-2Rβ) pair, containing human-specific mutations.

View Article and Find Full Text PDF

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.

View Article and Find Full Text PDF

Metastatic medullary thyroid cancer (MTC) is a rare but often aggressive thyroid malignancy with a 5-year survival rate of less than 40% and few effective therapeutic options. Adoptive T cell immunotherapy using chimeric antigen receptor (CAR)-modified T cells (CAR Ts) is showing encouraging results in the treatment of cancer, but development is challenged by the availability of suitable target antigens. We identified glial-derived neurotrophic factor (GDNF) family receptor alpha 4 (GFRα4) as a putative antigen target for CAR-based therapy of MTC.

View Article and Find Full Text PDF

Purpose: T cells engineered to express a chimeric antigen receptor (CAR) are a promising cancer immunotherapy. Such targeted therapies have shown long-term relapse-free survival in patients with B-cell leukemia and lymphoma. However, cytokine release syndrome (CRS) represents a serious, potentially life-threatening side effect often associated with CAR T-cell therapy.

View Article and Find Full Text PDF

Desmoglein 3 chimeric autoantibody receptor T cells (DSG3-CAART) expressing the pemphigus vulgaris (PV) autoantigen DSG3 fused to CD137-CD3ζ signaling domains, represent a precision cellular immunotherapy approach for antigen-specific B cell depletion. Here, we present definitive preclinical studies enabling a first-in-human trial of DSG3-CAART for mucosal PV. DSG3-CAART specifically lysed human anti-DSG3 B cells from PV patients and demonstrated activity consistent with a threshold dose in vivo, resulting in decreased target cell burden, decreased serum and tissue-bound autoantibodies, and increased DSG3-CAART engraftment.

View Article and Find Full Text PDF

Inhibitors of Bruton tyrosine kinase (BTK), a kinase downstream of BCR, display remarkable activity in a subset of mantle cell lymphoma (MCL) patients, but the drug resistance remains a considerable challenge. In this study, we demonstrate that aberrant expression of ROR1 (receptor tyrosine kinase-like orphan receptor 1), seen in a large subset of MCL, results in BCR/BTK-independent signaling and growth of MCL cells. ROR1 forms a functional complex with CD19 to persistently activate the key cell signaling pathways PI3K-AKT and MEK-ERK in the BCR/BTK-independent manner.

View Article and Find Full Text PDF

The success of chimeric antigen receptor (CAR)-mediated immunotherapy in acute lymphoblastic leukemia (ALL) highlights the potential of T-cell therapies with directed cytotoxicity against specific tumor antigens. The efficacy of CAR T-cell therapy depends on the engraftment and persistence of T cells following adoptive transfer. Most protocols for T-cell engineering routinely expand T cells for 9 to 14 days.

View Article and Find Full Text PDF

Multiple myeloma has a continued need for more effective and durable therapies. B cell maturation antigen (BCMA), a plasma cell surface antigen and member of the tumor necrosis factor (TNF) receptor superfamily, is an attractive target for immunotherapy of multiple myeloma due to its high prevalence on malignant plasma cells. The current work details the pre-clinical evaluation of BCMA expression and development of a chimeric antigen receptor (CAR) targeting this antigen using a fully human single chain variable fragment (scFv).

View Article and Find Full Text PDF

Etomoxir (ETO) is a widely used small-molecule inhibitor of fatty acid oxidation (FAO) through its irreversible inhibitory effects on the carnitine palmitoyl-transferase 1a (CPT1a). We used this compound to evaluate the role of fatty acid oxidation in rapidly proliferating T cells following costimulation through the CD28 receptor. We show that ETO has a moderate effect on T cell proliferation with no observable effect on memory differentiation, but a marked effect on oxidative metabolism.

View Article and Find Full Text PDF

Background: Multiple myeloma is usually fatal due to serial relapses that become progressively refractory to therapy. CD19 is typically absent on the dominant multiple myeloma cell population but may be present on minor subsets with unique myeloma-propagating properties. To target myeloma-propagating cells, we clinically evaluated autologous T cells transduced with a chimeric antigen receptor (CAR) against CD19 (CTL019).

View Article and Find Full Text PDF

Patient-derived xenotransplantation models of human myeloid diseases including acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms are essential for studying the biology of the diseases in pre-clinical studies. However, few studies have used these models for comparative purposes. Previous work has shown that acute myeloid leukemia blasts respond to human hematopoietic cytokines whereas myelodysplastic syndrome cells do not.

View Article and Find Full Text PDF

The GD2 ganglioside, which is abundant on the surface of neuroblastoma cells, is targeted by an FDA-approved therapeutic monoclonal antibody and is an attractive tumor-associated antigen for cellular immunotherapy. Chimeric antigen receptor (CAR)-modified T cells can have potent antitumor activity in B-cell malignancies, and trials to harness this cytolytic activity toward GD2 in neuroblastoma are under way. In an effort to enhance the antitumor activity of CAR T cells that target GD2, we generated variant CAR constructs predicted to improve the stability and the affinity of the GD2-binding, 14G2a-based, single-chain variable fragment (scFv) of the CAR and compared their properties We included the E101K mutation of GD2 scFv (GD2-E101K) that has enhanced antitumor activity against a GD2 human neuroblastoma xenograft However, this enhanced antitumor efficacy was concomitantly associated with lethal central nervous system (CNS) toxicity comprised of extensive CAR T-cell infiltration and proliferation within the brain and neuronal destruction.

View Article and Find Full Text PDF

Protein-coated microbeads provide a consistent approach for activating and expanding populations of T cells for immunotherapy but do not fully capture the properties of antigen presenting cells. In this report, we enhance T cell expansion by replacing the conventional, rigid bead with a mechanically soft elastomer. Polydimethylsiloxane (PDMS) was prepared in a microbead format and modified with activating antibodies to CD3 and CD28.

View Article and Find Full Text PDF

Purpose: Responses to therapy with chimeric antigen receptor T cells recognizing CD19 (CART19, CTL019) may vary by histology. Mantle cell lymphoma (MCL) represents a B-cell malignancy that remains incurable despite novel therapies such as the BTK inhibitor ibrutinib, and where data from CTL019 therapy are scant. Using MCL as a model, we sought to build upon the outcomes from CTL019 and from ibrutinib therapy by combining these in a rational manner.

View Article and Find Full Text PDF

Syngeneic and transgenic mouse models are important tools for the study of the biology of cancer. While syngeneic mouse models are generated through the implantation in host animals of tumor cells from genetically and immunologically compatible donors, transgenic mouse models are engineered to express genetic material with oncogenic properties in predetermined location. We have developed a syngeneic mouse model of ovarian cancer permitting in vivo imaging in immunocompetent recipients by implanting ovaries with fluorescently labeled cancer cells that derived from a spontaneous ovarian tumor developing in a transgenic mouse model.

View Article and Find Full Text PDF

Complement activation plays a critical role in controlling inflammatory responses. To assess the role of complement during ovarian cancer progression, we crossed two strains of mice with genetic complement deficiencies with transgenic mice that develop epithelial ovarian cancer (TgMISIIR-TAg). TgMISIIR-TAg mice fully or partially deficient for complement factor 3 (C3) (Tg(+)C3(KO) and Tg(+)C3(HET), respectively) or fully deficient for complement factor C5a receptor (C5aR) (Tg(+)C5aR(KO)) develop either no ovarian tumors or tumors that were small and poorly vascularized compared to wild-type littermates (Tg(+)C3(WT), Tg(+)C5aR(WT)).

View Article and Find Full Text PDF

Background: Ovarian cancer is generally diagnosed at an advanced stage where the case/fatality ratio is high and thus remains the most lethal of all gynecologic malignancies among US women. Serous tumors are the most widespread forms of ovarian cancer and the Tg-MISIIR-TAg transgenic represents the only mouse model that spontaneously develops this type of tumors. Tg-MISIIR-TAg mice express SV40 transforming region under control of the Mullerian Inhibitory Substance type II Receptor (MISIIR) gene promoter.

View Article and Find Full Text PDF