Human examiners, known as panelists, are exposed to an unknown occupational exposure risk while determining odor concentration (C) using dynamic olfactometry. In the literature, a few papers, based on a deterministic approach, have been proposed to establish this occupational risk. As a result, the purpose of this study is to develop and apply a probabilistic approach, based on the randomization of exposure parameters, for assessing and evaluating the occupational exposure risk among olfactometric examiners.
View Article and Find Full Text PDFGeothermal areas are typically characterised by the presence of gases and odours in the background atmosphere, stemming from natural emissions and possible mining exploitation of the area. This study presents the first olfactometric investigation of endogenous gas emissions from natural and archaeo-industrial vents in a geothermal area. Mt.
View Article and Find Full Text PDFIn last years, atmospheric dispersion models have reached considerable popularity in environmental research field. In this regard, given the difficulties associated to the estimation of emission rate for some kind of sources, and due to the importance of this parameter for the reliability of the results, Backward dispersion models may represent promising tools. In particular, by knowing a measured downwind concentration in ambient air, they provide a numerical value for the emission rate.
View Article and Find Full Text PDFThe investigation of Volatile Organic Compounds (VOCs) emission from wastewater basins is a challenging issue. In particular, the quantification of an accurate emission rate appears quite tricky, since the release of VOC compounds from this type of source, and the subsequent dispersion into the atmosphere, is ruled by different complex phenomena, potentially affected by a variety of external chemical and physical parameters. In this regard, the wind velocity and the liquid temperature represent variables that are worth investigating.
View Article and Find Full Text PDFA pilot-scale experiment was implemented in a waste bioreactor with an inner capacity of 1 m in order to simulate a real-scale composting process. The waste underwent composting conditions that are typical of the initial bio-oxidation phase, characterised by a high production of volatile organic compounds (VOCs), hydrogen sulphide (HS) and odorants. The waste bioreactor was fed with an intermittent airflow rate of 6 Nm/h.
View Article and Find Full Text PDFRefineries are characterized by relevant odour impacts, and the control and monitoring of this pollutant have become increasingly important. Dynamic olfactometry, a sensorial analysis that involves human examiners, is currently the most common technique to obtain odour quantification. However, due to the potential presence of hazardous pollutants, the conduction of occupational risk assessment is necessary to guarantee examiners' safety.
View Article and Find Full Text PDFOdors are typically released into the atmosphere as diffuse emissions from area and volume sources, whose detailed quantification in terms of odor emission rate is often hardly achievable by direct source sampling. Indirect methods, involving the use of micrometeorological methods in order to correlate downwind concentrations to the emission rates, are already mentioned in literature, but rarely found in real applications for the quantification of odor emissions. The instrumentation needed for the development of micrometeorological methods has nowadays become accessible in terms of prices and reliability, thus making the implementation of such methods to industrial applications more and more interesting.
View Article and Find Full Text PDFBackground: Storage tanks in oil and gas processing facilities contain large volumes of flammable compounds. Once the fuel-air mixture is ignited, it may break out into a large fire or explosion. The growing interest in monitoring air quality and assessing health risks makes the evaluation of the consequences of a fire an important issue.
View Article and Find Full Text PDFThe paper aims to propose a new method to evaluate the occupational exposure risk for examiners involved in dynamic olfactometry. Indeed, examiners are possibly exposed to hazardous pollutants potentially present in odorous samples. A standardized method to evaluate the examiners' occupational safety is not yet available and the existing models present some critical aspect if applied to real odorous samples (no uniform reference concentrations applied and presence of compounds for which no toxicity threshold is available).
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
July 2021
The scope of this work is the evaluation of the non-carcinogenic occupational risk related to foundry emissions, focusing on the category of workers involved in olfactometric assessments. Odor pollution from industrial activities such as foundries is a serious environmental concern. Sensorial techniques (e.
View Article and Find Full Text PDFShort-term events are one of the specific aspects that differentiate odour nuisance problems from conventional air quality pollutants. Atmospheric dispersion modelling has been considered the gold standard to realise odour impact assessments and to calculate separation distances. Most of these models provide predictions of concentrations of a pollutant in ambient air on an hourly basis.
View Article and Find Full Text PDFThe purpose of this study is to deepen the knowledge of the various emission phenomena present in aerated tanks, widely used systems for municipal and industrial wastewater treatment. In order to investigate the emission mechanism, a specific model was developed. The theoretical model proposes to consider three different contributions to the emission of organic compounds from aerated wastewater tanks: the convection due to the sweep air flow rate, the rising bubbles stripping and the aerosol formation and successive evaporation.
View Article and Find Full Text PDFCancer is one of the major causes of mortality worldwide and its already large burden is projected to increase significantly in the near future with a predicted 22 million new cancer cases and 13 million cancer-related deaths occurring annually by 2030. Unfortunately, current procedures for diagnosis are characterized by low diagnostic accuracies. Given the proved correlation between cancer presence and alterations of biological fluid composition, many researchers suggested their characterization to improve cancer detection at early stages.
View Article and Find Full Text PDFThe aim of this work is the evaluation and the analysis of the different chemical-physical variables that affect the emission of volatile organic compounds (VOC) and odours from passive liquid area sources inside a wind tunnel, which is typically used for emission sampling. Three different compounds (acetone, butanol and ethanol), having different volatilization properties (e.g.
View Article and Find Full Text PDFProstate cancer is the second most common cause of cancer death among men. It is an asymptomatic and slow growing tumour, which starts occurring in young men, but can be detected only around the age of 40–50. Although its long latency period and potential curability make prostate cancer a perfect candidate for screening programs, the current procedure lacks in specificity.
View Article and Find Full Text PDFDust pollution is a complex problem of growing interest because of its environmental, health, economic and political impact. Environmental impact assessment methods for dust pollution management are often based on the simulation of dust dispersion, which requires a precise characterization of the source term and of the source parameters. The source term model should be as simple and as accurate as possible and requires low time consumption in order to be easily connected to a more complex algorithm for the dispersion calculations.
View Article and Find Full Text PDFThe first aim of this work is the definition and the study of a suitable sampling method for the measurement of landfill gas (LFG) emissions from landfill surfaces, since, up to now, there are no codified nor universally accepted sampling methods for this specific task. The studied sampling method is based on the use of a static hood. The research work involves a preliminary theoretical study for the hood design, experimental tests for the definition of the optimal sampling procedures, and simulations of the hood fluid-dynamics for the system validation.
View Article and Find Full Text PDFScientificWorldJournal
January 2018
Hydrogen-sulfide (HS) is a molecule of small dimensions typically present in the odor emissions from different plants. The European Standard EN 13725:2003 set a maximum storage time allowed of 30 hours, during which the sampling bag has to maintain the mixture of odorants with minimal changes. This study investigates the HS losses through Nalophan bags and it shows that nonnegligible losses of HS can be observed.
View Article and Find Full Text PDFIndoor air quality influences people's lives, potentially affecting their health and comfort. Nowadays, ventilation is the only technique commonly used for regulating indoor air quality. CO₂ is the reference species considered in order to calculate the air exchange rates of indoor environments.
View Article and Find Full Text PDFThis article analyzes the state of the art of the methods and models used for the characterization of odor annoyance and it preliminary advances some proposals for the evaluation of the olfactory nuisance. The use of a sensorial technique, such as dynamic olfactometry, is proposed for the analysis of odor concentrations, odor emission rates, and odor dispersions. A simple model for the quantification of environmental odor nuisance, based on the use of FIDOL factors, that are, frequency, intensity, duration, hedonic tone, and location, is proposed.
View Article and Find Full Text PDFThe electronic nose is able to provide useful information through the analysis of the volatile organic compounds in body fluids, such as exhaled breath, urine and blood. This paper focuses on the review of electronic nose studies and applications in the specific field of medical diagnostics based on the analysis of the gaseous headspace of human urine, in order to provide a broad overview of the state of the art and thus enhance future developments in this field. The research in this field is rather recent and still in progress, and there are several aspects that need to be investigated more into depth, not only to develop and improve specific electronic noses for different diseases, but also with the aim to discover and analyse the connections between specific diseases and the body fluids odour.
View Article and Find Full Text PDFDespite initial enthusiasm towards electronic noses and their possible application in different fields, and quite a lot of promising results, several criticalities emerge from most published research studies, and, as a matter of fact, the diffusion of electronic noses in real-life applications is still very limited. In general, a first step towards large-scale-diffusion of an analysis method, is standardization. The aim of this paper is describing the experimental procedure adopted in order to evaluate electronic nose performances, with the final purpose of establishing minimum performance requirements, which is considered to be a first crucial step towards standardization of the specific case of electronic nose application for environmental odor monitoring at receptors.
View Article and Find Full Text PDFThe work focuses on the principles for the design of a specific static hood and on the definition of an optimal sampling procedure for the assessment of landfill gas (LFG) surface emissions. This is carried out by means of computational fluid dynamics (CFD) simulations to investigate the fluid dynamics conditions of the hood. The study proves that understanding the fluid dynamic conditions is fundamental in order to understand the sampling results and correctly interpret the measured concentration values by relating them to a suitable LFG emission model, and therefore to estimate emission rates.
View Article and Find Full Text PDFScientificWorldJournal
November 2015
The ammonia loss through Nalophan bags has been studied. The losses observed for storage conditions and times as allowed by the reference standard for dynamic olfactometry (EN 13725:2003) indicate that odour concentration values due to the presence of small molecules may be significantly underestimated if samples are not analysed immediately after sampling. A diffusion model was used in order to study diffusion through the bag.
View Article and Find Full Text PDFElectronic nose applications in environmental monitoring are nowadays of great interest, because of the instruments' proven capability of recognizing and discriminating between a variety of different gases and odors using just a small number of sensors. Such applications in the environmental field include analysis of parameters relating to environmental quality, process control, and verification of efficiency of odor control systems. This article reviews the findings of recent scientific studies in this field, with particular focus on the abovementioned applications.
View Article and Find Full Text PDF