Mechano-chemical treatment has been recognized to be a promising technology for the immobilization of heavy metals (HMs) in contaminated soils without the use of additional reagents. Despite this, very few studies aiming to investigate the applicability of this technology at full scale have been published so far. In this study, a quantitative approach was developed to provide process design information to scale-up from laboratory- into pilot-scale mechano-chemical reactors for immobilizing heavy metals in contaminated mining soil.
View Article and Find Full Text PDFIn the present work, the use of ball milling reactors for the remediation of lead contaminated soils was investigated. Lead immobilization was achieved without the use of additional reactants but only through the exploitation of weak transformations induced on the treated soil by mechanical loads taking place during collisions among milling media. The degree of metal immobilization was evaluated by analyzing the leachable fraction of Pb(II) obtained through the "synthetic precipitation leaching procedure".
View Article and Find Full Text PDF