In this study, we used machine learning (ML) to classify the cardiomyocyte (CM) content on day 10 of the differentiation of human-induced pluripotent stem cell (hiPSC)-laden microspheroids using easily acquirable nondestructive phase-contrast images taken in the middle of differentiation and tunable experimental parameters. Scale-up suspension culture, use of engineered tissues to support stem cell differentiation, and CM production for improved control over cellular microenvironment in the suspension system need nondestructive methods to track engineered tissue development. The ability to couple images that capture experimenter perceived "good" or "bad" batches based on visualization at early differentiation time points with actual experimental outcomes in an unbiased way is a step toward building these methods.
View Article and Find Full Text PDFHuman cardiomyocytes (CMs) have potential for use in therapeutic cell therapy and high-throughput drug screening. Because of the inability to expand adult CMs, their large-scale production from human pluripotent stem cells (hPSC) has been suggested. Significant improvements have been made in understanding directed differentiation processes of CMs from hPSCs and their suspension culture-based production at chemically defined conditions.
View Article and Find Full Text PDF