Objective: The main goal of this work is to develop computer-aided classification models for single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) to identify perfusion abnormalities (myocardial ischemia and/or infarction).
Methods: Two different classification models, namely, deep learning (DL)-based and knowledge-based, are proposed. The first type of model utilizes transfer learning with pre-trained deep neural networks and a support vector machine classifier with deep and shallow features extracted from those networks.