Understanding the interaction between photons and matter is crucial for exploring essential questions in nuclear physics. The Giant Dipole Resonance (GDR) is the prevailing mechanism in photo-absorption cross-sections up to 30 MeV. Depending on whether the nucleus is spherical or deformed, the curve of the photo-absorption cross-section versus photon energy is characterized by one or several Lorentzian peaks.
View Article and Find Full Text PDFIn recent developments, artificial neural networks (ANNs) have demonstrated their capability to predict reaction cross-sections based on experimental data. Specifically, for predicting (α,n) reaction cross-sections, we meticulously fine-tuned the neural network's performance by optimizing its parameters through the Levenberg-Marquardt algorithm. The effectiveness of this approach is corroborated by notable correlation coefficients; an R-value of 0.
View Article and Find Full Text PDFAppl Radiat Isot
September 2023
This study is concerned with the calculations of double differential neutron cross-sections of the structural fusion materials of Fe and Zr isotopes that are bombarded with protons. Calculations were performed using the level density models of the TALYS 1.95 code and PHITS 3.
View Article and Find Full Text PDFMany studies have investigated the influence of theoretical models and factors involved in the acquisition of cross-section data of a nuclear reaction. The implications of different models of various variables such as level density, gamma strength function, and optical potentials on cross-section calculations whether used solo or jointly are investigated in a significant portion of the works conducted in this perspective. The aim of this particular study is to investigate the influence of different optical models on the cross-section calculations in production of several scandium isotopes, known for various medical uses, from several targets with natural abundances by (d,x) reactions.
View Article and Find Full Text PDFPrediction of neutron-induced reaction cross-sections at around the 14.5 MeV neutron energy is crucial to calculate nuclear transmutation rates, nuclear heating, and radiation damage from gas formation in fusion reactor technology In this research, the new approach of (n,α) reaction cross-section is presented. It has been assessed by utilizing the artificial neural network (ANN) when compared to more advanced algorithms, the Levenberg-Marquardt algorithm-based ANN can be exceedingly fast.
View Article and Find Full Text PDFIn cases where it is not possible to obtain the cross-section values experimentally due to various factors, the importance of obtaining them with theoretical models has been explained in many studies available in the literature. In this context, the comparison of the cross-section values obtained by using the theoretical models with the experimental data will also be very beneficial for updating and developing these models. Existing studies, which also serve this purpose, have given inspiration to this study and it is aimed to examine the effects of the simultaneous use of the alpha optical model potentials and the level density models on the cross-section calculations for some alpha-particle-induced reactions on natural antimony.
View Article and Find Full Text PDFMass excess knowledge is important to investigate the fundamental properties of atomic nuclei. It is a meaningful and important parameter for the determinations of nucleon binding energy, nuclear reaction Q value, energy threshold and plays an undeniable role in the theoretical calculations of a reaction cross-section value in terms of the quantities it affects. In this research, a new artificial neural network (ANN) based algorithm is proposed to determine the mass excess of nuclei.
View Article and Find Full Text PDFA common feature of scientific studies is that when experimental observation data are not available, theoretical calculations are used to obtain information about the subject under investigation. In this context, many parameters and theoretical models have been developed that can be used in nuclear physics studies just as it is in other branches of sciences. It is intended that by doing so, theoretical models can be improved using recent experimental data while also learning about outcomes where experimental data is unavailable or difficult to access.
View Article and Find Full Text PDFThe main aim of this study is to develop accurate artificial neural network (ANN) algorithms to estimate level density parameters. An efficient Bayesian-based algorithm is presented for classification algorithms. Unknown model parameters are estimated using the observed data, from which the Bayesian-based algorithm is predicted.
View Article and Find Full Text PDFIn this study; Giant Dipole Resonance (GDR) parameters of the spherical nucleus have been estimated by using artificial neural network (ANN) algorithms. The ANN training has been carried out with the Levenberg-Marquardt feed-forward algorithm in order to provide fast convergence and stability in ANN training and experimental data, taken from Reference Input Parameter Library (RIPL). R values of the system have been found as 0.
View Article and Find Full Text PDFThe knowledge of the interaction of photons with matter is of vital importance to investigate fundamental nuclear physics problems. Giant dipole resonance (GDR) mechanism is dominant up to 30 MeV at photo-absorption cross-section. The photo-absorption cross-section curve against the photon energy displays one or multi-peak Lorentzian functions according to the deformation of the nucleus.
View Article and Find Full Text PDFIn this study, the effects of the two Schiff base derivatives and their metal complexes were tested for MDA concentration, which is an indicator of lipid peroxidation, antioxidant vitamin A, vitamin E, and vitamin C levels in cell culture. A comparison was performed among the groups and it was observed that MDA, vitamin A, vitamin E, and vitamin C concentrations were statistically changed. According to the results, all compounds caused a significant oxidative stress without Zn complexes.
View Article and Find Full Text PDFScientists have been focused on fusion reactor studies to overcome the increasing energy demand. The materials, which have the potential to be used in fusion reactors must be resistant to the harmful effects of radiation in the manner of material itself. Selection of the appropriate materials to be used in nuclear reactors has a crucial importance to achieve the maximum efficiency and security.
View Article and Find Full Text PDFGroundwater is a major water source for drinking, domestic and agricultural activities in the Korkuteli district. However, the intensive agricultural activities in the region negatively affect the groundwater quality. In this study, 30 water samples were collected from springs, wells, and tap waters in dry and wet seasons.
View Article and Find Full Text PDFThe materials used in fusion reactor must be resistance to the harmful effects of radiation in the manner of material itself. Selection of the appropriate materials used in nuclear reactor has a crucial importance to achieve the maximum efficiency and security. Ti, Cu and Zr are known to be employed as first wall materials in fusion reactors.
View Article and Find Full Text PDFThis article demonstrates the synthesis of 1,2,4-triazole derivatives and their applications in medicine particularly as anti-breast cancer agents which is a major issue of the present. The synthesized compounds were characterized by elemental analysis, FT-IR and NMR. DFT was used to study the quantum chemical calculations of geometries and vibrational wave numbers of 3-hydroxynaphthyl and p-tolyl substituted 1,2,4-triazoles in the ground state.
View Article and Find Full Text PDFAdverse biological activities of Schiff base (SB) derivatives are well known. In this study, the ligand and its metal complexes have been synthesized and characterized by IR, (1)H-NMR spectra, elemental analyses, magnetic susceptibility, UV-Vis spectra, and thermogravimetry/differential thermal analysis. From the elemental analyses data, the complexes were proposed to have the general formula [Mn(L)(2)(H(2)O)(2)], [Co(L)(2)(H(2)O)(2)], and [Ni(2)(L)(H(2)O)(4)(Cl)(3)].
View Article and Find Full Text PDFThe title molecule, 4-allyl-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (C(11)H(11)N(3)OS), was synthesized and characterized by IR-NMR spectroscopy and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic space group is P2(1)/c, a=9.0907(5)A, b=9.
View Article and Find Full Text PDFThe molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) 1H and 13C chemical shift values and several thermodynamic parameters of 3-(2-Hydroxyphenyl)-4-phenyl-1H-1,2,4-triazole-5-(4H)-thione in the ground state have been calculated by using the Hartree-Fock (HF) and density functional methods (BLYP and B3LYP) with 6-31G(d) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains one O-H.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
June 2009
In the title compound, C(13)H(9)N(3)S(2), the thio-phene and phenyl rings are oriented at dihedral angles of 8.00 (7) and 6.31 (7)°, respectively, with respect to the central thia-diazole ring.
View Article and Find Full Text PDFThe molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) (1)H and (13)C chemical shift values and several thermodynamic parameters of 5-(2-Hydroxyphenyl)-4-(p-tolyl)-2,4-dihydro-1,2,4-triazole-3-thione in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6-31G(d), 6-31 + G(d,p) and LANL2DZ basis sets. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2007
The molecular geometry and vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) in the ground state has been calculated using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2007
The molecular geometry and vibrational frequencies of N-phenyl-N'-(2-thienylmethylene)hydrazine (C11H10N2S) have been calculated using Hartree-Fock and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and angles obtained using HF and DFT (B3LYP) are in agreement with the experimental data. B3LYP method seems to be appropriate than HF method for the calculation of vibrational frequencies and geometrical parameters of the (C11H10N2S) compound.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2006
The molecular structure and vibrational spectra of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H) (C(17)H(13)N(3)O(2)) have been investigated by Hartree-Fock and density functional method using standard B3LYP with 6-31G(d) basis set. The calculated results of the geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) are in very good agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H) (C(17)H(13)N(3)O(2)) and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.
View Article and Find Full Text PDF