Turk Gogus Kalp Damar Cerrahisi Derg
April 2023
Right heart thrombi can be seen in a minority of patients with acute pulmonary embolism and are associated with an increased mortality risk. The optimal treatment option comprises thrombolysis or surgical thrombectomy either with catheterbased interventions or with open surgery. Open right atrial thrombectomy is usually performed under cardiopulmonary bypass due to the need for concomitant pulmonary embolectomy.
View Article and Find Full Text PDFPurpose: Loeys-Dietz syndrome (LDS) is a rare connective tissue disorder. In LDS patients with normal arch morphology, whether the arch should be prophylactically replaced at the time of proximal aortic replacement remains unknown. We evaluated the risk of long-term arch complications in genetically confirmed LDS patients who underwent proximal ascending aortic replacement.
View Article and Find Full Text PDFBackground: A lack of donor hearts remains a major limitation of heart transplantation. Hearts from Centers for Disease Control (CDC) high-risk donors can be utilized with specific recipient consent. However, outcomes of heart transplantation with CDC high-risk donors are not well known.
View Article and Find Full Text PDFPatterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture.
View Article and Find Full Text PDFQT interval variation is assumed to arise from variation in repolarization as evidenced from rare Na- and K-channel mutations in Mendelian QT prolongation syndromes. However, in the general population, common noncoding variants at a chromosome 1q locus are the most common genetic regulators of QT interval variation. In this study, we use multiple human genetic, molecular genetic, and cellular assays to identify a functional variant underlying trait association: a noncoding polymorphism (rs7539120) that maps within an enhancer of NOS1AP and affects cardiac function by increasing NOS1AP transcript expression.
View Article and Find Full Text PDFPrevious studies have postulated an important role for the inwardly rectifying potassium current (I(K1)) in controlling the dynamics of electrophysiological spiral waves responsible for ventricular tachycardia and fibrillation. In this study, we developed a novel tissue model of cultured neonatal rat ventricular myocytes (NRVMs) with uniform or heterogeneous Kir2.1expression achieved by lentiviral transfer to elucidate the role of I(K1) in cardiac arrhythmogenesis.
View Article and Find Full Text PDFAlthough stretch-activated currents have been extensively studied in isolated cells and intact heart in the context of mechanoelectric feedback (MEF) in the heart, quantitative data regarding other mechanical parameters such as pressure, shear, bending, etc, are still lacking at the multicellular level. Cultured cardiac cell monolayers have been used increasingly in the past decade as an in vitro model for the studies of fundamental mechanisms that underlie normal and pathological electrophysiology at the tissue level. Optical mapping makes possible multisite recording and analysis of action potentials and wavefront propagation, suitable for monitoring the electrophysiological activity of the cardiac cell monolayer under a wide variety of controlled mechanical conditions.
View Article and Find Full Text PDFRecombinant lentiviral vectors (LVs) are capable of transducing neonatal rat ventricular myocytes (NRVMs) and providing stable, long-term transgene expression. The goal of the present study was to comprehensively test whether transduction of NRVMs by LVs results in cytotoxicity and to examine the electrophysiological consequences of gene modification of NRVM monolayers by two vectors: one encoding a putatively inert enhanced green fluorescent protein (eGFP) and the other a major ion channel protein, inward rectifier K(+) channel (Kir) 2.1.
View Article and Find Full Text PDFModification of electrical conduction would be a useful principle to recruit in preventing or treating certain arrhythmias, notably ventricular tachycardia (VT). Here we pursue a novel gene transfer approach to modulate electrical conduction by reducing gap junctional intercellular communication (GJIC) and hence potentially modify the arrhythmia substrate. The ultimate goal is to develop a nondestructive approach to uncouple zones of slow conduction by focal gene transfer.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells (MSCs) are bone marrow stromal cells that are in phase 1 clinical studies of cellular cardiomyoplasty. However, the electrophysiological effects of MSC transplantation have not been studied. Although improvement of ventricular function would represent a positive outcome of MSC transplantation, focal application of stem cells has the potential downside of creating inhomogeneities that may predispose the heart to reentrant arrhythmias.
View Article and Find Full Text PDFThe current advances in fluorescence microscopy, coupled with the development of new fluorescent probes, make fluorescence resonance energy transfer (FRET) a powerful technique for studying molecular interactions inside living cells with improved spatial (angstrom) and temporal (nanosecond) resolution, distance range, and sensitivity and a broader range of biological applications.
View Article and Find Full Text PDF