Publications by authors named "Sekaly R"

Hospitalized COVID-19 patients exhibit diverse immune responses during acute infection, which are associated with a wide range of clinical outcomes. However, understanding these immune heterogeneities and their links to various clinical complications, especially long COVID, remains a challenge. In this study, we performed unsupervised subtyping of longitudinal multi-omics immunophenotyping in over 1,000 hospitalized patients, identifying two critical subtypes linked to mortality or mechanical ventilation with prolonged hospital stay and three severe subtypes associated with timely acute recovery.

View Article and Find Full Text PDF

In the 2018 yellow fever (YF) outbreak in Brazil, we generated new transcriptomic data and combined it with clinical and immunological data to decode the pathogenesis of YF. Analyzing 79 patients, we found distinct gene expression patterns between acute YF, other viral infections, and the milder YF-17D vaccine infection. We identified a critical role for low-density, immature neutrophils in severe outcomes, marked by the downregulation of genes essential for neutrophil migration and maturation, such as PADI4, CSF3R, and ICAM1, in deceased patients.

View Article and Find Full Text PDF

BACKGROUNDAntiretroviral therapy (ART) has improved the clinical management of HIV-1 infection. However, little is known about how the latest ART recommendations affect the heterogeneity of the HIV-1 reservoir size.METHODSWe used a complete statistical approach to outline parameters underlying the diversity in HIV-1 reservoir size in a cohort of 892 people with HIV-1 (PWH) on suppressive ART for more than 3 years.

View Article and Find Full Text PDF

Men are at higher risk for developing severe COVID-19 than women, while women are at higher risk for developing post-acute sequelae of COVID-19 (PASC). This highlights the impact of sex differences on immune responses and clinical outcomes of acute COVID-19 or PASC. A dynamic immune-endocrine interface plays an important role in the development of effective immune responses impacting the control of viral infections.

View Article and Find Full Text PDF
Article Synopsis
  • - Antibodies are generated by naive B cells turning into plasma cells in germinal centers (GCs) of lymphoid tissues, and patients with B cell lymphoma undergoing immunotherapy have reduced antibody production, leading to higher infection rates and weaker vaccine responses.
  • - Current research models struggle to effectively mimic long-term GC functions and assess B cell responses, prompting the development of synthetic hydrogels that replicate the lymphoid tissue environment to support human GCs from various blood sources.
  • - The new immune organoid systems maintain critical B cell functions longer and offer unique immune programming features; however, they show less effectiveness with lymphoma-derived B cells, indicating a rapid method for studying immune responses and B cell-related disorders.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of blocking interleukin-10 (IL-10) and PD-1 on controlling HIV/SIV viral rebound after stopping antiretroviral therapy (ART).
  • In a trial with rhesus macaques, a combination treatment of anti-IL-10 and anti-PD-1 led to sustained control of viral levels in 9 out of 10 monkeys for over 24 weeks post-treatment interruption.
  • Outcomes indicated that specific immune responses, such as increased memory T cells and changes in cytokine levels, could predict successful viral control after ART cessation.
View Article and Find Full Text PDF

Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIV infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs.

View Article and Find Full Text PDF
Article Synopsis
  • Vaccines have helped reduce COVID-19 severity, but their effectiveness in areas with helminth infections, like the roundworm Hpb, isn't fully understood.
  • In a study involving mice, it was found that while B cell responses were similar in both Hpb-infected and uninfected mice post-vaccination, T cell responses were significantly weaker in those infected with Hpb.
  • The presence of Hpb compromised the ability of the vaccine to protect against variant strains of SARS-CoV-2, indicating that helminth infections can negatively affect vaccine responses through an IL-10 mediated pathway.
View Article and Find Full Text PDF

A subset of people living with HIV (PLWH) can produce broadly neutralizing antibodies (bNAbs) against HIV, but the lymph node (LN) dynamics that promote the generation of these antibodies are poorly understood. Here, we explored LN-associated histological, immunological, and virological mechanisms of bNAb generation in a cohort of anti-retroviral therapy (ART)-naïve PLWH. We found that participants who produce bNAbs, termed neutralizers, have a superior LN-associated B cell follicle architecture compared with PLWH who do not.

View Article and Find Full Text PDF

Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vaccinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/TV003). Anti-inflammatory pathways, including TGF-β signaling expressed by CD68 monocytes, and the metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly neutralizing antibody responses against DENV.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8 T cell functions, which requires a deeper understanding of CD8 T cells promoting HIV control. Here we identifiy an antigen-responsive TOXTCF1CD39CD8 T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8 T cells and proteomic analysis of purified CD8 T cell subsets identified TOXTCF1CD39CD8 T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells.

View Article and Find Full Text PDF

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.

View Article and Find Full Text PDF

Unlabelled: Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how helminth (hookworm) infection affects the effectiveness of an mRNA vaccine designed to fight COVID-19 in mice.
  • While both infected and uninfected mice showed strong antibody responses, the T cell responses were significantly weaker in the helminth-infected group.
  • The presence of the helminth reduced the vaccine's ability to control newer COVID-19 variants, suggesting that helminth infections can impair vaccine-induced T cell immunity through an IL-10 mediated pathway.
View Article and Find Full Text PDF

Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10x Genomics Chromium single cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human moDCs infected with ZIKV at the single cell level.

View Article and Find Full Text PDF

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities.

View Article and Find Full Text PDF

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes.

View Article and Find Full Text PDF

Despite antiretroviral therapy (ART), people living with human immunodeficiency virus (HIV) (PLWH) continue to experience chronic inflammation and immune dysfunction, which drives the persistence of latent HIV and prevalence of clinical comorbidities. Elucidating the mechanisms that lead to suboptimal immunity is necessary for developing therapeutics that improve the quality of life of PLWH. Although previous studies have found associations between gut dysbiosis and immune dysfunction, the cellular/molecular cascades implicated in the manifestation of aberrant immune responses downstream of microbial perturbations in PLWH are incompletely understood.

View Article and Find Full Text PDF

The co-expression of inhibitory receptors (IRs) is a hallmark of CD8+ T-cell exhaustion (Tex) in people living with HIV-1 (PLWH). Understanding alterations of IRs expression in PLWH on long-term antiretroviral treatment (ART) remains elusive but is critical to overcoming CD8+ Tex and designing novel HIV-1 cure immunotherapies. To address this, we combine high-dimensional supervised and unsupervised analysis of IRs concomitant with functional markers across the CD8+ T-cell landscape on 24 PLWH over a decade on ART.

View Article and Find Full Text PDF

Schistosomiasis is a disease caused by parasitic flatworms of the Schistosoma spp., and is increasingly recognized to alter the immune system, and the potential to respond to vaccines. The impact of endemic infections on protective immunity is critical to inform vaccination strategies globally.

View Article and Find Full Text PDF

Background: Efforts to modulate the function of tumor-associated myeloid cell are underway to overcome the challenges in immunotherapy and find a cure. One potential therapeutic target is integrin CD11b, which can be used to modulate the myeloid-derived cells and induce tumor-reactive T-cell responses. However, CD11b can bind to multiple different ligands, leading to various myeloid cell functions such as adhesion, migration, phagocytosis, and proliferation.

View Article and Find Full Text PDF

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease.

View Article and Find Full Text PDF

HIV infection persists during antiretroviral therapy (ART) due to a reservoir of latently infected cells that harbor replication-competent virus and evade immunity. Previous ex vivo studies suggested that CD8 T cells from people with HIV may suppress HIV expression via non-cytolytic mechanisms, but the mechanisms responsible for this effect remain unclear. Here, we used a primary cell-based in vitro latency model and demonstrated that co-culture of autologous activated CD8 T cells with HIV-infected memory CD4 T cells promoted specific changes in metabolic and/or signaling pathways resulting in increased CD4 T cell survival, quiescence, and stemness.

View Article and Find Full Text PDF