Background: Flag leaf (FL) and panicle architecture (PA) are critical for increasing rice grain yield as well as production. A genome-wide association study (GWAS) can better understand the genetic pathways behind complex traits like FL and PA.
Results: In this study, 208 diverse rice germplasms were grown in the field at the Texas A&M AgriLife Research Center at Beaumont, TX, during 2022 and 2023 following Augmented Randomized Complete Block Design.
Salinity stress is a major constraint to rice production in many coastal regions due to saline groundwater and river sources, especially during the dry season in coastal areas when seawater intrudes further inland due to reduced river flows. Since salinity tolerance is a complex trait, breeding efforts can be assisted by mapping quantitative trait loci (QTLs) for complementary salt tolerance mechanisms, which can then be combined to provide higher levels of tolerance. While an abundance of seedling stage salinity tolerance QTLs have been mapped, few studies have investigated reproductive stage tolerance in rice due to the difficulty of achieving reliable stage-specific phenotyping techniques.
View Article and Find Full Text PDF