Publications by authors named "Sejun An"

We report the first experimental observation of the excited dipole-bound state (DBS) of the cryogenically cooled nitromethane anion (CHNO), where the excess electron is loosely attached to the singlet or triplet neutral-core. Photofragment and photodetachment action spectra have been employed for the dynamic exploration of Feshbach resonances located even far above the electron detachment threshold, giving excitation profiles from the ground anionic state (D) to the DBSs which match quite well with the spectral structures of the photoelectron spectra. This indicates that the electron transfer from the nonvalence orbital (of DBS) to the valence orbital (of anion) is mainly responsible for the anionic fragmentation channels, giving strong evidence for that the DBS plays a dynamic doorway-role in the anionic fragmentation reactions.

View Article and Find Full Text PDF

The aim of this prospective study is to investigate implant stability and the reliability of different measuring devices according to implant placement site and duration in patients aged over 65 years. The study evaluated 60 implants (diameter: 3.5/4.

View Article and Find Full Text PDF

Objectives: To investigate the influence of thermal cycling and mechanical loading (TCML) aging on fracture resistance and wear behavior of various chairside computer-aided-designed/computer-assisted-manufactured (CAD/CAM) premolar crowns cemented on standardized tooth abutments.

Methods: Eighty chairside CAD/CAM crowns were prepared using lithium disilicate (IPS e.max CAD; EM), zirconia-infiltrated lithium silicate (Celtra Duo; CD), polymer-infiltrated ceramic network (Vita Enamic; VE), and resin nanoceramics (Cerasmart; CS) (n = 20).

View Article and Find Full Text PDF

Feshbach resonances corresponding to metastable vibrational states of the dipole-bound state (DBS) have been interrogated in real time for the first time. The state-specific autodetachment rates of the DBS of the phenoxide anion in the cryogenically cooled ion trap have been directly measured, giving τ∼33.5  ps for the lifetime of the most prominent 11^{'1} mode (519  cm^{-1}).

View Article and Find Full Text PDF