J Biomater Sci Polym Ed
December 2023
Molecular chaperones play vital roles in various physiological reactions by regulating the folding and assembly of biomacromolecules. We have demonstrated that cationic comb-type copolymers exhibit chaperone activity for anionic biomolecules including DNA and ionic peptide the formation of soluble interpolyelectrolyte complexes. The development of smart artificial chaperones that can be spatiotemporally controlled by a remotely guided signal would expand the functions of artificial chaperones.
View Article and Find Full Text PDFWe propose to monitor molecular vibrations to identify metal ion-ligand complexation by means of Raman spectroscopy, which has been applied to track vibrational modes of molecules and to obtain a structural fingerprint. We prepared ligand molecules for Zn ion complexation with a dipycolylaminoethyl aniline (DPEA) skeleton and phenylacetylene unit as the Raman tag which showed a typical band around 2200 cm. Among the labeled ligands synthesized in this study, A-DPEA showed a strong band attributed to the acetylene unit at 2212 cm, while the addition of Zn ion resulted in a band shift to 2220 cm due to complex formation.
View Article and Find Full Text PDF