Publications by authors named "Seiya Ichikawa"

Patient misidentification in imaging examinations has become a serious problem in clinical settings. Such misidentification could be prevented if patient characteristics such as sex, age, and body weight could be predicted based on an image of the patient, with an alert issued when a mismatch between the predicted and actual patient characteristic is detected. Here, we tested a simple convolutional neural network (CNN)-based system that predicts patient sex from FDG PET-CT images.

View Article and Find Full Text PDF