Philos Trans A Math Phys Eng Sci
December 2021
Skin patterns are the first example of the existence of Turing patterns in living organisms. Extensive research on zebrafish, a model organism with stripes on its skin, has revealed the principles of pattern formation at the molecular and cellular levels. Surprisingly, although the networks of cell-cell interactions have been observed to satisfy the 'short-range activation and long-range inhibition' prerequisites for Turing pattern formation, numerous individual reactions were not envisioned based on the classical reaction-diffusion model.
View Article and Find Full Text PDFAnimals exhibit a fascinating variety of skin patterns, but mechanisms underlying this diversity remain largely unknown, particularly for complex and camouflaged colorations. A mathematical model predicts that intricate color patterns can be formed by "pattern blending" between simple motifs via hybridization. Here, I analyzed the skin patterns of 18,114 fish species and found strong mechanistic associations between camouflaged labyrinthine patterns and simple spot motifs, showing remarkable consistency with the pattern blending hypothesis.
View Article and Find Full Text PDFBackground: Enormous variability in skin colour and patterning is a characteristic of teleost fish, including Salmonidae fishes, which present themselves as a suitable model for studying mechanisms of pigment patterning. In order to screen for candidate genes potentially involved in the specific skin pigment pattern in marble trout (labyrinthine skin pattern) and brown trout (spotted skin pattern), we conducted comparative transcriptome analysis between differently pigmented dermis sections of the adult skin of the two species.
Results: Differentially expressed genes (DEGs) possibly associated with skin pigment pattern were identified.
Pigment Cell Melanoma Res
March 2012
Palatal ridges, or rugae palatinae, are corrugated structures observed in the hard palate region. They are found in most mammalian species, but their number and arrangement are species-specific. Nine palatal rugae are found in the mouse secondary palate.
View Article and Find Full Text PDFBiologists have long been fascinated by the amazing diversity of animal colour patterns. Despite much interest, the underlying evolutionary and developmental mechanisms contributing to their rich variety remain largely unknown, especially the vivid and complex colour patterns seen in vertebrates. Here, we show that complex and camouflaged animal markings can be formed by the 'blending' of simple colour patterns.
View Article and Find Full Text PDFAlthough the fugu Takifugu rubripes has attracted attention as a model organism for genomic studies because of its compact genome, it is not generally appreciated that there are approximately 25 closely related species with limited distributions in the waters of East Asia. We performed molecular phylogenetic analyses and constructed a time tree using whole mitochondrial genome sequences from 15 Takifugu species together with 10 outgroups to examine patterns of diversification. The resultant time tree showed that the modern Takifugu species underwent explosive speciation during the Pliocene 1.
View Article and Find Full Text PDFIntegrin-type complement receptors play pivotal roles in the effector mechanisms of the complement system. Previously, we identified an integrin alpha subunit, alpha(Hr1), from the solitary ascidian, Halocynthia roretzi, which is involved in the complement-dependent phagocytic activities of ascidian hemocytes. To identify integrin beta subunits that pair with alpha(Hr1) to compose ascidian complement receptors, genes encoding beta subunits were cloned and characterized for their binding property to alpha(Hr1).
View Article and Find Full Text PDFAnalysis of the human MASP-1/3 gene, which encodes two proteases of the lectin-triggered complement cascade, has revealed alternatively used serine-protease-encoding regions for the gene's two protein products. Phylogenetic studies indicate that one arose by retrotransposition early in vertebrate evolution, supporting the idea that the lectin branch of the complement cascade arose earlier than the 'classical' pathway.
View Article and Find Full Text PDF