The cell signaling molecules nitric oxide (NO) and Ca regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells.
View Article and Find Full Text PDFOn-site monitoring of plasma drug concentrations is required for effective therapies. Recently developed handy biosensors are not yet popular owing to insufficient evaluation of accuracy on clinical samples and the necessity of complicated costly fabrication processes. Here, we approached these bottlenecks via a strategy involving engineeringly unmodified boron-doped diamond (BDD), a sustainable electrochemical material.
View Article and Find Full Text PDFMonitoring drug concentration in blood and reflecting this in the dosage are crucial for safe and effective drug treatment. Most drug assays are based on total concentrations of bound and unbound proteins in the serum, although only the unbound concentration causes beneficial and adverse events. Monitoring the unbound concentration alone is expected to provide a means for further optimisation of drug treatment.
View Article and Find Full Text PDFHearing loss affects >5% of the global population and therefore, has a great social and clinical impact. Sensorineural hearing loss, which can be caused by different factors, such as acoustic trauma, aging, and administration of certain classes of drugs, stems primarily from a dysfunction of the cochlea in the inner ear. Few therapeutic strategies against sensorineural hearing loss are available.
View Article and Find Full Text PDFMethylcobalamin, which is used for the clinical treatment of patients with neuropathy, can have an impact on the sensorineural components associated with the cochlea, and it is possible that the auditory threshold in a certain population of patients with deafness may be recovered. Nonetheless, it remains uncertain whether the action site of methylcobalamin is localized inside or outside the cochlea and which cellular or tissue element is targeted by the drug. In the present work, we developed a method to realize real-time simultaneous examination of the drug kinetics in two separate locations using boron-doped diamond microelectrodes.
View Article and Find Full Text PDFHypoxia sensors are essential for regulating local oxygen (O) homeostasis within the body. This is especially pertinent within the CNS, which is particularly vulnerable to O deprivation due to high energetic demand. Here, we reveal hypoxia-monitoring function exerted by astrocytes through an O-regulated protein trafficking mechanism within the CNS.
View Article and Find Full Text PDFIn mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset.
View Article and Find Full Text PDFNihon Yakurigaku Zasshi
August 2019
Continuous and real-time measurement of local concentrations of systemically administered drugs in vivo must be crucial for pharmacological studies. Nevertheless, conventional methods require considerable samples quantity and have poor sampling rates. Additionally, they cannot determine how drug kinetics correlates with target function over time.
View Article and Find Full Text PDFMembrane proteins (such as ion channels, transporters, and receptors) and secreted proteins are essential for cellular activities. N-linked glycosylation is involved in stability and function of these proteins and occurs at Asn residues. In several organs, profiles of N-glycans have been determined by comprehensive analyses.
View Article and Find Full Text PDFLight-gated ion channels and transporters have been applied to a broad array of excitable cells including neurons, cardiac myocytes, skeletal muscle cells and pancreatic β-cells in an organism to clarify their physiological and pathological roles. Nonetheless, among nonexcitable cells, only glial cells have been studied by this approach. Here, by optogenetic stimulation of a different nonexcitable cell type in the cochlea of the inner ear, we induce and control hearing loss.
View Article and Find Full Text PDFThe article An approach to the research on ion and water properties in the interphase between the plasma membrane and bulk extracellular solution, written by Hiroshi Hibino, Madoka Takai, Hidenori Noguchi, Seishiro Sawamura, Yasufumi Takahashi, Hideki Sakai and Hitoshi Shiku, was originally published Online First without open access.
View Article and Find Full Text PDFThe cochlear lateral wall-an epithelial-like tissue comprising inner and outer layers-maintains +80 mV in endolymph. This endocochlear potential supports hearing and represents the sum of all membrane potentials across apical and basolateral surfaces of both layers. The apical surfaces are governed by K equilibrium potentials.
View Article and Find Full Text PDFReal-time recording of the kinetics of systemically administered drugs in in vivo microenvironments may accelerate the development of effective medical therapies. However, conventional methods require considerable analyte quantities, have low sampling rates and do not address how drug kinetics correlate with target function over time. Here, we describe the development and application of a drug-sensing system consisting of a glass microelectrode and a microsensor composed of boron-doped diamond with a tip of around 40 μm in diameter.
View Article and Find Full Text PDFIn vivo, cells are immersed in an extracellular solution that contains a variety of bioactive substances including ions and water. Classical electrophysiological analyses of epithelial cells in the stomach and small intestine have revealed that within a distance of several hundred micrometers above their apical plasma membrane, lies an extracellular layer that shows ion concentration gradients undetectable in the bulk phase. This "unstirred layer", which contains stagnant solutes, may also exist between the bulk extracellular solution and membranes of other cells in an organism and may show different properties.
View Article and Find Full Text PDFThe cochlea of the mammalian inner ear contains an endolymph that exhibits an endocochlear potential (EP) of +80 mV with a [K(+)] of 150 mM. This unusual extracellular solution is maintained by the cochlear lateral wall, a double-layered epithelial-like tissue. Acoustic stimuli allow endolymphatic K(+) to enter sensory hair cells and excite them.
View Article and Find Full Text PDFTransient receptor potential canonical (TRPC) proteins form Ca(2+)-permeable cation channels activated upon stimulation of metabotropic receptors coupled to phospholipase C. Among the TRPC subfamily, TRPC3 and TRPC6 channels activated directly by diacylglycerol (DAG) play important roles in brain-derived neurotrophic factor (BDNF) signaling, promoting neuronal development and survival. In various disease models, BDNF restores neurologic deficits, but its therapeutic potential is limited by its poor pharmacokinetic profile.
View Article and Find Full Text PDFTransient receptor potential canonical (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that carry receptor-operated Ca(2+) currents (ROCs) triggered by receptor-induced, phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction, and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure.
View Article and Find Full Text PDFCalcium current through voltage-gated calcium channels (VGCC) controls gene expression. Here, we describe a novel signalling pathway in which the VGCC Cacnb4 subunit directly couples neuronal excitability to transcription. Electrical activity induces Cacnb4 association to Ppp2r5d, a regulatory subunit of PP2A phosphatase, followed by (i) nuclear translocation of Cacnb4/Ppp2r5d/PP2A, (ii) association with the tyrosine hydroxylase (TH) gene promoter through the nuclear transcription factor thyroid hormone receptor alpha (TRα), and (iii) histone binding through association of Cacnb4 with HP1γ concomitantly with Ser(10) histone H3 dephosphorylation by PP2A.
View Article and Find Full Text PDFConventional and novel protein kinase C (PKC) isozymes transduce the abundance of signals mediated by phospholipid hydrolysis; however redundancy in regulatory mechanisms confounds dissecting the unique signaling properties of each of the eight isozymes constituting these two subgroups. Previously, we created a genetically encoded reporter (C kinase activity reporter (CKAR)) to visualize the rate, amplitude, and duration of agonist-evoked PKC signaling at specific locations within the cell. Here we designed a reporter, δCKAR, that specifically measures the activation signature of one PKC isozyme, PKC δ, in cells, revealing unique spatial and regulatory properties of this isozyme.
View Article and Find Full Text PDF