This study presents a thorough experimental investigation utilising the design of experiments and analysis of variance (ANOVA) to examine the impact of machining process parameters on chip formation mechanisms, machining forces, workpiece surface integrity, and damage resulting from the orthogonal cutting of unidirectional CFRP. The study identified the mechanisms behind chip formation and found it to significantly impact the workpiece orientation of fibre and the tool's cutting angle, resulting in increased fibre bounceback at larger fibre orientation angles and when using smaller rake angle tools. Increasing the depth of cut and fibre orientation angle results in an increased damage depth, while using higher rake angles reduces it.
View Article and Find Full Text PDFThis paper details an experimental investigation on the influence of the size effect when slot-milling a CMSX-4 single-crystal nickel-based superalloy using 1 mm- and 4 mm-diameter TiAlN-coated tungsten carbide (WC) end-mills. With all tools having similar cutting-edge radii (r) of ~6 µm, the feed rate was varied between 25-250 mm/min while the cutting speed and axial depth of cut were kept constant at 126 m/min and 100 µm, respectively. Tests involving the Ø 4 mm end-mills exhibited a considerable elevation in specific cutting forces exceeding 500 GPa, as well as irregular chip morphology and a significant increase in burr size, when operating at the lowest feed rate of 25 mm/min.
View Article and Find Full Text PDFTitanium oxide layers were produced via a novel catalytic ceramic conversion treatment (CCCT, C3T) on Ti-6Al-4V. This CCCT process is carried out by applying thin catalytic films of silver and palladium onto the substrate before an already established traditional ceramic conversion treatment (CCT, C2T) is carried out. The layers were characterised using scanning electron microscopy, X-ray diffraction, transmission electron microscopy; surface micro-hardness and reciprocating tribological performance was assessed; antibacterial performance was also assessed with .
View Article and Find Full Text PDFIn this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO rutile layer (~2 μm in thickness) supported by an oxygen hardened case (~15 μm in thickness) with very good bonding due to the in-situ conversion nature.
View Article and Find Full Text PDF