A multichannel speech enhancement system usually consists of spatial filters such as adaptive beamformers followed by postfilters, which suppress remaining noise. Accurate estimation of the power spectral density (PSD) of the residual noise is crucial for successful noise reduction in the postfilters. In this paper, we propose a postfilter utilizing proposed speech presence probability (SPP) and noise PSD estimators, which are based on both the coherence and the statistical models.
View Article and Find Full Text PDFOnline multi-microphone speech enhancement aims to extract target speech from multiple noisy inputs by exploiting the spatial information as well as the spectro-temporal characteristics with low latency. Acoustic parameters such as the acoustic transfer function and speech and noise spatial covariance matrices (SCMs) should be estimated in a causal manner to enable the online estimation of the clean speech spectra. In this paper, we propose an improved estimator for the speech SCM, which can be parameterized with the speech power spectral density (PSD) and relative transfer function (RTF).
View Article and Find Full Text PDF