K potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (covalent activation of TREK family K channels to clamp membrane potential) that leverages the discovery of a K modulator pocket site that reacts with electrophile-bearing derivatives of a TREK subfamily small-molecule activator, ML335, to activate the channel irreversibly.
View Article and Find Full Text PDFThe halothane-inhibited K leak potassium channel K13.1 (THIK-1) is found in diverse cells including neurons and microglia where it affects surveillance6, synaptic pruning7, phagocytosis7, and inflammasome-mediated interleukin-1β release. As with many Ks and other voltage-gated ion channel (VGIC) superfamily members, polyunsaturated fatty acid (PUFA) lipids modulate K13.
View Article and Find Full Text PDFVoltage-gated ion channels (VGICs) comprise multiple structural units, the assembly of which is required for function. Structural understanding of how VGIC subunits assemble and whether chaperone proteins are required is lacking. High-voltage-activated calcium channels (Cas) are paradigmatic multisubunit VGICs whose function and trafficking are powerfully shaped by interactions between pore-forming Ca1 or Ca2 Caα (ref.
View Article and Find Full Text PDFNatural killer (NK) cells are an attractive cell source in cancer immunotherapy due to their potent antitumor ability and promising safety for allogenic applications. However, the clinical outcome of NK cell therapy has been limited due to poor persistence and loss of activity in the cytokine-deficient tumor microenvironment. Benefits from exogenous administration of soluble interleukin-2 (IL-2) to stimulate the activity of NK cells have not been significant due to cytokine consumption and activation of other immune cells, compromising both efficacy and safety.
View Article and Find Full Text PDFSynaptic adhesion molecules regulate synapse development through trans-synaptic adhesion and assembly of diverse synaptic proteins. Many synaptic adhesion molecules positively regulate synapse development; some, however, exert negative regulation, although such cases are relatively rare. In addition, synaptic adhesion molecules regulate the amplitude of post-synaptic receptor responses, but whether adhesion molecules can regulate the kinetic properties of post-synaptic receptors remains unclear.
View Article and Find Full Text PDFCurr Opin Neurobiol
August 2017
Synaptic adhesion molecules have been extensively studied for their contribution to the regulation of synapse development through trans-synaptic adhesions. However, accumulating evidence increasingly indicates that synaptic adhesion molecules are also involved in the regulation of excitatory synaptic transmission and plasticity, often through direct or close associations with excitatory neurotransmitter receptors. This review summarizes recent results supporting this emerging concept and underlying mechanisms, and addresses its implications.
View Article and Find Full Text PDFSynaptic adhesion molecules regulate synapse development and plasticity through mechanisms that include trans-synaptic adhesion and recruitment of diverse synaptic proteins. We found that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule that preferentially expressed in the brain, is a dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPA glutamate receptors (AMPARs). IgSF11 required PSD-95 binding for its excitatory synaptic localization.
View Article and Find Full Text PDFCentral glutamatergic synapses and the molecular pathways that control them are emerging as common substrates in the pathogenesis of mental disorders. Genetic variation in the contactin associated protein-like 2 (CNTNAP2) gene, including copy number variations, exon deletions, truncations, single nucleotide variants, and polymorphisms have been associated with intellectual disability, epilepsy, schizophrenia, language disorders, and autism. CNTNAP2, encoded by Cntnap2, is required for dendritic spine development and its absence causes disease-related phenotypes in mice.
View Article and Find Full Text PDFDiacylglycerol (DAG) is an important signaling molecule at neuronal synapses. Generation of synaptic DAG is triggered by the activation of diverse surface receptors including N-methyl-D-aspartate (NMDA) receptors and metabotropic glutamate receptors. The action of DAG is terminated by enzymatic conversion of DAG to phosphatidic acid (PA) by DAG kinases (DGKs).
View Article and Find Full Text PDF